
R

Video Starter Kit

User Guide

UG217 (v1.5) October 26, 2006

Video Starter Kit www.xilinx.com UG217 (v1.5) October 26, 2006

Xilinx is disclosing this Document and Intellectual Property (hereinafter “the Design”) to you for use in the development of designs to operate
on, or interface with Xilinx FPGAs. Except as stated herein, none of the Design may be copied, reproduced, distributed, republished,
downloaded, displayed, posted, or transmitted in any form or by any means including, but not limited to, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Xilinx. Any unauthorized use of the Design may violate copyright
laws, trademark laws, the laws of privacy and publicity, and communications regulations and statutes.

Xilinx does not assume any liability arising out of the application or use of the Design; nor does Xilinx convey any license under its patents,
copyrights, or any rights of others. You are responsible for obtaining any rights you may require for your use or implementation of the Design.
Xilinx reserves the right to make changes, at any time, to the Design as deemed desirable in the sole discretion of Xilinx. Xilinx assumes no
obligation to correct any errors contained herein or to advise you of any correction if such be made. Xilinx will not assume any liability for the
accuracy or correctness of any engineering or technical support or assistance provided to you in connection with the Design.

THE DESIGN IS PROVIDED “AS IS” WITH ALL FAULTS, AND THE ENTIRE RISK AS TO ITS FUNCTION AND IMPLEMENTATION IS
WITH YOU. YOU ACKNOWLEDGE AND AGREE THAT YOU HAVE NOT RELIED ON ANY ORAL OR WRITTEN INFORMATION OR
ADVICE, WHETHER GIVEN BY XILINX, OR ITS AGENTS OR EMPLOYEES. XILINX MAKES NO OTHER WARRANTIES, WHETHER
EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DESIGN, INCLUDING ANY WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, TITLE, AND NONINFRINGEMENT OF THIRD-PARTY RIGHTS.

IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL DAMAGES,
INCLUDING ANY LOST DATA AND LOST PROFITS, ARISING FROM OR RELATING TO YOUR USE OF THE DESIGN, EVEN IF YOU
HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THE TOTAL CUMULATIVE LIABILITY OF XILINX IN CONNECTION
WITH YOUR USE OF THE DESIGN, WHETHER IN CONTRACT OR TORT OR OTHERWISE, WILL IN NO EVENT EXCEED THE
AMOUNT OF FEES PAID BY YOU TO XILINX HEREUNDER FOR USE OF THE DESIGN. YOU ACKNOWLEDGE THAT THE FEES, IF
ANY, REFLECT THE ALLOCATION OF RISK SET FORTH IN THIS AGREEMENT AND THAT XILINX WOULD NOT MAKE AVAILABLE
THE DESIGN TO YOU WITHOUT THESE LIMITATIONS OF LIABILITY.

The Design is not designed or intended for use in the development of on-line control equipment in hazardous environments requiring fail-
safe controls, such as in the operation of nuclear facilities, aircraft navigation or communications systems, air traffic control, life support, or
weapons systems (“High-Risk Applications”). Xilinx specifically disclaims any express or implied warranties of fitness for such High-Risk
Applications. You represent that use of the Design in such High-Risk Applications is fully at your risk.

© 2005, 2006 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx,
Inc. All other trademarks are the property of their respective owners.

Revision History

Video Starter Kit
UG217 (v1.5) October 26, 2006

The following table shows the revision history for this document.

R

Date Version Revision

12/22/05 1.0 Initial Xilinx release.

02/13/06 1.1 Edits throughout the document.

03/14/06 1.2 Minor edits in Chapter 6. Replaced Figure 6-5.

06/27/06 1.3 Minor edits.

10/10/06 1.4 Edits and additions to Chapter 5, “VSK Diagnostics and Support Tool Kit” and
Chapter 7, “Compiling the VIODC FPGA Design.”

10/26/06 1.5 Updated Figure 5-6 and Figure 5-9. Added new Table 5-5.

http://www.xilinx.com

UG217 (v1.5) October 26, 2006 www.xilinx.com Video Starter Kit

Contents

Preface: About This Guide
Guide Contents . 13
Additional Resources . 14
Conventions . 14

Typographical . 14
Online Document . 15

Chapter 1: Video Starter Kit Overview
Key Features . 17
VSK Hardware Overview . 18

ML402 Development Platform . 18
XC4VSX35 FPGA . 18
Gigabit Ethernet . 18
RS-232 Port . 19
DDR Memory . 19
System Ace Controller . 19
I/O Expansion Header . 19
Video Input and Output Daughter Card . 19
LVDS Camera Input . 20
Component Video I/O . 20
DVI Digital Video I/O. 20
S-Video and Composite Video . 20
SDI Video Interface . 20
XCV2P7 FPGA . 20

VSK Demo Application . 21
Software and Application Updates Available Online . 22

Software Support Package Overview . 22
Software Simulation . 23
Hardware Implementation . 23
Hardware Co-Simulation . 23

VIODC HDL Support Package . 24
System Generator Support . 24

DDR Memory Controller . 24
Pcore Export and EDK Import . 25
Multiple Subsystem Generator . 25
Ethernet Co-Sim . 25
Diagnostics . 25
Demonstrations . 25

MPEG Decoding Demo. 25
VSK Diagnostics Camera Demo . 25
SDI Demo . 25
Video Demo in Verilog . 26

http://www.xilinx.com

UG217 (v1.5) October 26, 2006 www.xilinx.com Video Starter Kit

Chapter 2: Developing Video Applications
In System Generator

Overview . 27
Real-Time Operation . 27
Hardware-in-the-Loop Video Simulation . 28
Hardware-in the Loop Co-Simulation. 28
Software Simulation Modes . 29
Hardware-Software Systems . 30

Generating a Video Processor as an EDK Pcore . 30
Hardware-Software Communication. 31

Memory Mapped Hardware . 31
MicroBlaze Processor Communicating with a Shared Memory 31
Hardware-Software Co-Simulation. 32

EDK Co-Simulation . 32
VSK Video Processor Development System . 32

ML402 FPGA . 33
MicroBlaze Subsystem . 33
VIODC FPGA . 33

Chapter 3: EDK Integration
Overview . 35
MicroBlaze Processor Interface . 35

EDK Pcore Export Mode . 36
EDK Import Mode . 36

Adding a Processor to a System Generator Design . 36
The EDK Processor Block . 36
Interfacing the EDK Processor to User Logic . 36
Exporting the Design as a Pcore . 37
Importing an EDK Project into System Generator . 39

Writing Software Code . 41

Chapter 4: Hardware Co-Simulation
Hardware Co-Simulation Overview . 45
Co-Simulation Communication Primitives. 45

Ports . 45
Shared Register . 46
Shared Memory . 46
FIFO . 47
Pad . 48
Shared Memory Read/Write Blocks . 49

Co-Simulation Interfaces . 50
JTAG. 50
PCI . 50
Network-Based Ethernet Co-Simulation . 50
Point to Point Ethernet Co-Simulation . 51
Third Party Co-Simulation . 51
Building a Co-Sim Project . 52

Choosing a Compilation Target . 52

http://www.xilinx.com

UG217 (v1.5) October 26, 2006 www.xilinx.com Video Starter Kit

Invoking the Code Generator . 52
Hardware Co-Simulation Blocks . 54

Ethernet Co-Sim Setup . 55
System ACE Setup . 56

Prepare the System ACE Compact Flash Card . 56
Assign an Ethernet MAC Address and IPv4 Address . 57
Adjust On-Board Settings for System ACE. 57

System ACE Troubleshooting . 58
Verify System ACE Settings . 58
Verify Ethernet Interface And Connection Status . 58

Ensuring a Correct Setup . 59
Choose the Configuration Method . 60
Configure the Ethernet Interface Settings . 61
Co-Simulating the Design . 63

Frame Based Co-Simulation Tutorial . 64

Chapter 5: VSK Diagnostics and Support Tool Kit
Overview . 65
VIODC Design. 66

IIC Interface. 68
VIODC-ML402 Serial Port . 68

VIODC Serial Port Interface . 68
VIODC Registers . 70
Clock Routing . 73

VIO Design . 73
VIO Mask . 76

Compile Type . 76
Input Type . 77
Output Type . 77
Mask Modifications . 77

EDK Pcore . 77
Bitstream . 78
VIO I/O Buses . 79
VIO Registers . 80

DDR Design . 80
VOP Design . 81
Running the Diagnostics . 82

Hardware Setup . 83
Software Setup . 84

Configure the ML402 Board to Run the Diagnostics. 84
Running the VSK Diagnostics. 85
RGB Camera Test . 85
Component Video Input Test . 85
DVI Input Test . 86
VGA Input Test. 86
Composite Input Test . 86
S-Video Input Test . 86

Additional Diagnostics and Controls . 87
VIO Diagnostics Peek and Poke Facility . 87
VIO Diagnostics - Device Configure Facility . 88
Troubleshooting . 88

http://www.xilinx.com

Video Starter Kit www.xilinx.com UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
Overview . 89
Creating a Video Gain and Offset Peripheral . 89
Gain and Offset Theory . 90
System Architecture . 90

Video Stream Format . 90
Pixel Enable . 91

Tutorial Files. 91
Building the Gain Offset Pcore in System Generator . 91
Testing the Video Function in System Generator . 95
Generating the Pcore . 95
Importing the Pcore into an EDK Project. 96
Importing the Pcore Software Drivers . 98
Controlling the Pcore from a Demo Menu . 99
Running the Tutorial with Live Video . 99

Chapter 7: Compiling the VIODC FPGA Design
Tutorial Overview . 101
Overview of VIODC Design Compilation Process . 101

VIODC Design Components . 101
Incrementing the VIODC Version ID . 102

Generating the Design Using the Multiple Subsystem Generator 102
Using ISE Project Navigator to Add a VHDL Wrapper . 104
Loading the VIODC Design to the XCV2P7 FPGA on the VIODC Board 105
Verifying the VIODC Operation . 105

Modifying the VSK Diagnostic Software EDK Project . 106

Appendix A: VSK I/O Connector Location Pictures
VIODC Connectors . 107
LVDS Camera. 110
ML402 Board . 111

http://www.xilinx.com

UG217 (v1.5) October 26, 2006 www.xilinx.com Video Starter Kit

Schedule of Figures

Chapter 1: Video Starter Kit Overview
Figure 1-1: ML402 Block Diagram. 18
Figure 1-2: VIODC and ML402 Board with Video Interface Ports Labeled 19
Figure 1-3: RGB Camera Demo Setup . 21
Figure 1-4: RGB Camera Video Processing Pipeline . 21
Figure 1-5: Block Diagram of VSK RGB Camera Demo Included in the VSK 22
Figure 1-6: Software Simulation Flow . 22

Figure 1-7: Real-Time Deployment Flow. 23
Figure 1-8: Hardware-in-the-Loop Flow . 24

Chapter 2: Developing Video Applications
In System Generator

Figure 2-1: Video System Diagram . 27
Figure 2-2: Real-Time Video Processing . 28
Figure 2-3: Hardware-in-the-Loop Video Processing . 28
Figure 2-4: Simulink Diagram Implementing a Gain and Offset Function

Using Xilinx System Generator Blocks . 29
Figure 2-5: Gain and Offset Function Compiled to a Hardware Co-Sim Token 29
Figure 2-6: Software Simulation Using Live Video Signals with Simulink 30
Figure 2-7: MicroBlaze Processor with Peripherals and Three Custom

Video Peripherals . 30
Figure 2-8: System Generator Shared Memory Blocks . 31
Figure 2-9: MicroBlaze Processor Communicating with a Shared Memory 31
Figure 2-10: EDK Import with Registered IO . 32
Figure 2-11: ML402 FPGA . 33

Chapter 3: EDK Integration
Figure 3-1: Memory-Mapped User Logic . 35
Figure 3-2: EDK Processor Block . 36
Figure 3-3: EDK Processor GUI . 37
Figure 3-4: Export as a Pcore to EDK . 38
Figure 3-5: Launching Import Wizard . 39
Figure 3-6: EDK Import Wizard . 39
Figure 3-7: Hardware Co-Simulation Options . 40
Figure 3-8: Software Tab . 40
Figure 3-9: Xilinx Platform Studio - Assembly View . 41
Figure 3-10: Memory Map Documentation . 42

http://www.xilinx.com

Video Starter Kit www.xilinx.com UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
Figure 4-1: Ports . 45
Figure 4-2: Shared Register Pair . 46
Figure 4-3: Shared Memory . 47
Figure 4-4: Shared FIFO Pair . 47
Figure 4-5: Shared Memory Read and Write Blocks . 49
Figure 4-6: Status Bar . 51
Figure 4-7: Hardware Co-Simulation Targets . 52
Figure 4-8: Code Generator Generate Button . 52
Figure 4-9: Compilation Status . 53
Figure 4-10: Example of a Run-time Hardware Co-Simulation Block

Inserted in the Original Model . 54
Figure 4-11: Port Interface of a Run-time Co-Simulation Block Matches the

Port Interface of the Original Design . 55
Figure 4-12: ML402 Board Diagram . 56
Figure 4-13: On-Board Settings . 57
Figure 4-14: Board LCD Screen . 58
Figure 4-15: Ethernet Status LEDs. 58
Figure 4-16: FPGA Processing Subsystem . 59
Figure 4-17: Select Free Running Clock Source Mode . 60
Figure 4-18: Check the Has Video I/O Daughter Card (VIODC) . 60
Figure 4-19: Choose the Configuration Method . 61
Figure 4-20: Configure the Ethernet Interface Settings. 61
Figure 4-21: Ensure the Appropriate Interface is Chosen. 62
Figure 4-22: Ethernet Parameters Displayed on ML402 LCD Display. 62
Figure 4-23: Status Dialog Box . 63
Figure 4-24: Status Showing Reconnection . 63
Figure 4-25: Two Windows Shown after Configuration. 64

Chapter 5: VSK Diagnostics and Support Tool Kit
Figure 5-1: VSK Support Toolkit to Develop a Video Processor Pcore 65
Figure 5-2: VIODC – Top-Level Design with Seven Independent Clock Domains 66
Figure 5-3: VIODC Video Routing MUX. 67
Figure 5-4: SPort Waveform . 69
Figure 5-5: VIODC Clock Routing MUX . 73
Figure 5-6: VIO Pcore Top-Level Diagram . 74
Figure 5-7: VIO Parameter Mask . 75
Figure 5-8: Look Under Mask View of the vio if Block . 76
Figure 5-9: VIO Bitstream Design . 78
Figure 5-10: VIO Pcore Top-Level Diagram . 79
Figure 5-11: DDR Design . 81
Figure 5-12: RGB Camera Video Processing Pipeline. 81
Figure 5-13: VSK Demo Setup . 82

http://www.xilinx.com

UG217 (v1.5) October 26, 2006 www.xilinx.com Video Starter Kit

Figure 5-14: ML402 Board - Top View . 83
Figure 5-15: Virtex-4 ML40x Evaluation Platform Components (Back) 83
Figure 5-16: Configure the ML402 Board . 84
Figure 5-17: HyperTerm RS-232 Terminal Window . 85

Chapter 6: VSK Tutorial
Figure 6-1: Gain and Offset . 90
Figure 6-2: Gain and Offset System Architecture . 90
Figure 6-3: vid_go_start Simulation Results . 92
Figure 6-4: Gain and Offset Processing Pcore. 92
Figure 6-5: Connecting the Blocks. 93
Figure 6-6: EDK Processor Configuration . 94
Figure 6-7: Design Saved as vid_go.mdl. 95
Figure 6-8: Generating the Pcore . 96
Figure 6-9: Configure Coprocessor Panel . 97
Figure 6-10: System Menu Showing New Imported Pcore . 97
Figure 6-11: Pcore Wiring with vid_gain_offset Pcore Inserted into Video Pipeline . . . 98
Figure 6-12: iMPACT Window . 100

Chapter 7: Compiling the VIODC FPGA Design
Figure 7-1: VIODC Serial Register I/O Block . 102
Figure 7-2: vsk_viodc_xxx.mdl Top Level . 103
Figure 7-3: MSG Generate Block . 103
Figure 7-4: Directory Structure Generated by Multiple Subsystem Generator 104
Figure 7-5: Project Navigator Source File View . 105

Appendix A: VSK I/O Connector Location Pictures
Figure A-1: VIODC Rear View . 107
Figure A-2: VIODC Left Side View . 108
Figure A-3: VIODC Right Side View . 109
Figure A-4: LVDS Camera . 110
Figure A-5: ML402 Board . 111
Figure A-6: ML402 Evaluation Platform. 112

http://www.xilinx.com

Video Starter Kit www.xilinx.com UG217 (v1.5) October 26, 2006

http://www.xilinx.com

UG217 (v1.5) October 26, 2006 www.xilinx.com Video Starter Kit

Schedule of Tables

Chapter 1: Video Starter Kit Overview

Chapter 2: Developing Video Applications
In System Generator

Chapter 3: EDK Integration
Table 3-1: Pcore Directory Structure . 38

Chapter 4: Hardware Co-Simulation

Chapter 5: VSK Diagnostics and Support Tool Kit
Table 5-1: VSK Support Toolkit Components . 65
Table 5-2: VIODC Video Format . 68
Table 5-3: Available IIC Devices . 68
Table 5-4: VIODC Registers . 70
Table 5-5: VIO_IF GPIO Format . 79
Table 5-6: VIO Registers . 80
Table 5-7: Keystroke Menu . 87
Table 5-8: Available Devices . 87

Chapter 6: VSK Tutorial

Chapter 7: Compiling the VIODC FPGA Design

Appendix A: VSK I/O Connector Location Pictures

http://www.xilinx.com

Video Starter Kit www.xilinx.com UG217 (v1.5) October 26, 2006

http://www.xilinx.com

Video Starter Kit www.xilinx.com 13
UG217 (v1.5) October 26, 2006

R

Preface

About This Guide

This user guide provides a description of the Video Starter Kit (VSK) contents, features,
hardware, and software. The Video Starter Kit hardware consists of a ML402 FPGA
development platform with a Video Input and Output Daughter Card (VIODC) and an
LVDS video camera. The Video Starter Kit can be used with System Generator to develop
EDK processing cores that process live video streams.

Guide Contents
This user guide contains the following chapters:

• Chapter 1, “Video Starter Kit Overview” – provides a kit overview with a brief
description of the ML402 development platform, the VIODC, and the LVDS video
camera.

• Chapter 2, “Developing Video Applications In System Generator” – The Video Starter
Kit provides for both simulation and real-time operation for each of the components
in a video system.

• Chapter 3, “EDK Integration” – details the design-flow for incorporating a
MicroBlaze™ processor into MVI framework. In particular, it describes using the EDK
processor block in System Generator and the automatically generated software
drivers to read and write data to the System Generator design.

• Chapter 4, “Hardware Co-Simulation”– provides a description of the hardware co-
simulation interfaces that make it possible to compile a System Generator diagram
into an FPGA bitstream and associate this bitstream with a new run-time hardware
co-simulation block.

• Chapter 5, “VSK Diagnostics and Support Tool Kit”– describes how the VSK
diagnostics program serves to tie together the components of the VSK development
toolkit into a program for configuring the ML402 and VIODC boards for video
processing applications and for providing simple loopback and video processing
functions. The VSK support toolkit consists of both hardware and software modules.

• Chapter 6, “VSK Tutorial”– illustrates the process of creating a video processing core or
pcore which is compatible with systems constructed with the Xilinx Embedded
Development Kit (EDK). EDK pcores are reusable peripherals which can be imported
into any EDK project.

• Chapter 7, “Compiling the VIODC FPGA Design”– describes how to compile the
System Generator vsk_viodc_xxx.mdl design to a bitstream (xxx is the version
number).

• Appendix A, “VSK I/O Connector Location Pictures” – contains pictures showing
connection locations on the VIODC, LVDS video camera, the ML402 board, and the
ML402 Evaluation Platform.

http://www.xilinx.com

14 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Preface: About This Guide
R

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature/index.htm.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support Web Case, see the Xilinx website at:

http://www.xilinx.com/support.

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

http://www.xilinx.com
http://www.xilinx.com/literature/index.htm
http://www.xilinx.com/support

Video Starter Kit www.xilinx.com 15
UG217 (v1.5) October 26, 2006

Conventions
R

Online Document
The following conventions are used in this document:

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document See Figure 2-5 in the Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.

http://www.xilinx.com

16 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Preface: About This Guide
R

http://www.xilinx.com

Video Starter Kit www.xilinx.com 17
UG217 (v1.5) October 26, 2006

R

Chapter 1

Video Starter Kit Overview

Key Features
• Standard Video Development Platform for Xilinx FPGAs

• Real Time HD video simulation using Xilinx System Generator’s Hardware in the Loop

• Video Starter Kit (VSK) includes:

♦ Video I/O Daughter Card (VIODC) supports common video interfaces and
standards

♦ ML402 board with FPGA development platform (Xilinx XC4VSX35 FPGA)

♦ LVDS Camera featuring Micron MTV022 automotive CMOS image sensor

♦ Xilinx System Generator Software (8.2) for VSK

♦ Xilinx ISE Software (v8.2) for VSK

♦ XIlinx EDK Software (v8.2) for VSK

♦ Application demos

♦ Video cables and power supply

• VIODC features:

♦ High Definition Component video input and output including 1080I, 720P, and
525P

♦ Standard Definition S-video and Composite video input and output

♦ Digital Video Interface (DVI) input and output up to 165 MHz

♦ VGA analog input and output up to UXGA

♦ SDI Serial Digital video interface input with cable equalizer and output cable
driver. (The VSK is a demonstration platform only. For HD-SDI verification and
compliance, Xilinx recommends using the Cook Technologies SDV board).

♦ LVDS camera input

• Software development features:

♦ System Generator Blockset for Mathwork’s Simulink

♦ High-Speed Ethernet Hardware-in-the-Loop co-simulation provides near real-
time video simulation

♦ High performance Multi-Port DDR memory controller

♦ Automatically create MicroBlaze™ video peripherals with memory mapped I/O

♦ Import MicroBlaze projects into System Generator models

http://www.xilinx.com
http://www.cook-tech.com/ctxil206.html

18 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 1: Video Starter Kit Overview
R

VSK Hardware Overview
The Video Starter Kit hardware consists of a ML402 FPGA development platform with a
VIODC and an LVDS video camera.

ML402 Development Platform
The VSK is based on the Virtex™-4 ML402 XtremeDSP Evaluation Platform. The ML402
board contains a programmable XC4VSX35 FPGA and a number of standard peripheral
interfaces, such as Ethernet, RS232, and DDR memory.

XC4VSX35 FPGA
At the heart of the ML402 board is the XC4VSX35 FPGA, which contains both substantial
logic resources (15,360 logic slices), dual port memory (192 x 18-Kbit block RAMs) and
very high performance DSP blocks (192 DSP48 slices). In addition to high performance
processing capability, the XC4VSX35 FPGA provides access to the VIODC card and the
various external interfaces on the ML402 board.

Gigabit Ethernet
The 10/100/1 Gigabit Ethernet port provides a link between the VSK and a PC for high
speed video rate simulation. This high-speed simulation capability is known as Hardware-
in-the-Loop Co-Simulation. Simulation rates up to 600 Mb/s are achievable.

Figure 1-1: ML402 Block Diagram

FLASH

FLASH

Sync
RAM

32

32

32

3216

CF PC

JT
A

G
JT

A
G

JT
A

G
JT

A
G

S
E

L_
M

A
P

S
LV

 S
E

R
IA

L

M
S

T
R

 S
E

R
IA

L

System ACE

Platform Flash

CPLD

Virtex-4 FPGA

USB
Controller

Host
Peripheral

Peripheral

10/100/100
Ethernet PHY

DDR SDRAM

DDR SDRAM

RJ-45

AC97
Audio

CODEC

Video

RS-232 XCVR

16 x 32
Character LCD

GPIO
(Button/LED/DIP Switch)

Note: The DIP Switch
is not available on
the ML403 board.

100 MHz XTAL + User

SMA
(Differential In/Out Clocks)

Dual PS/2

I/O Expansion Header IIIC EEPROM
ug217_ch1_01_121605

JT
A

G User IIC Bus

Line Out/
Headphone

Mc In/
Line In

VGA

Serial

http://www.xilinx.com

Video Starter Kit www.xilinx.com 19
UG217 (v1.5) October 26, 2006

VSK Hardware Overview
R

RS-232 Port
The RS-232 port provides a link to a PC terminal program, such as HyperTerminal. Used
for debugging and controlling a MicroBlaze™ embedded processor. It must be connected
to the PC using a NULL modem cable.

DDR Memory
A 267 MHz 32-bit wide DDR memory is used to store video frames.

System Ace Controller
The System Ace controller provides access to Compact Flash memory cards which are used
to hold demos and bootable FPGA configurations.

I/O Expansion Header
The 64-signal pin expansion header is used to connect to the VIODC. For more information
on the ML402 board, refer to the ML402 webpage on the Xilinx website.

Video Input and Output Daughter Card
The VIODC is a standard video interface card for Xilinx development platforms. It is
compatible with the ML401, ML402, ML403 boards and other future Xilinx development
platforms.

The VIODC is shown in Figure 1-2 with the video ports labeled. The VIODC provides
access to high definition and standard definition video streams as well as computer
graphics video interfaces, such as VGA over DVI and SDI interfaces. The following
interfaces are supported.

Figure 1-2: VIODC and ML402 Board with Video Interface Ports Labeled

DVI out
VGA out

Video

ML402 Motherboard

DVI in

Power

ML402 MOTHERBOARD

XCV4SX35

VGA in LVDS Camera

SDI in
SDI out

S-Video

VIDEO IO
DAUGHTER CARD

JTAG

Compact Flash

Component

UG239_01_121405

http://www.xilinx.com
http://www.xilinx.com/xlnx/xebiz/designResources/ip_product_details.jsp?sGlobalNavPick=&sSecondaryNavPick=&category=&iLanguageID=1&key=HW-V4-ML402-USA

20 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 1: Video Starter Kit Overview
R

LVDS Camera Input
The LVDS camera input port supports the Irvine Sensors LVDS RGB Camera with a Micron
MT9V022 1/3 inch CMOS image sensor. The camera provides 752 x 480 pixels at 60 Hz
progressive scan. It features low noise and very high dynamic range. The interface is
implemented using LVDS signaling over standard Cat-6 Ethernet cables. Note that the
LVDS camera interface is not compatible with Ethernet.

Component Video I/O
The Component Video I/O uses standard RCA connectors to provide High Definition
(HD) video to the VIODC. Component Video is encoded as YPbPr video channels. The
Component Video input on the VIODC supports 1080I, 720P, and 525P video standards.
The Component Video interface devices on the VIODC support 10-bit digital video.

DVI Digital Video I/O
The VIODC supports DVI video input and output. DVI is commonly used to interface to
flat panel displays and computer graphics cards. The VIODC DVI interfaces support up to
165 MHz pixel clocks. In addition to computer graphics, DVI is also used to carry HD
video and is commonly found in high-end consumer video equipment, such as plasma
displays, and can be found on some DVD players. The DVI ports can also be connected to
HDMI interfaces by using a simple adapter.

S-Video and Composite Video
The VIODC supports S-Video inputs and outputs. These interfaces can be configured to
support NTSC, PAL, and virtually any other Standard Definition (SD) video format.

SDI Video Interface
A complete SDI video interface capable of supporting both SD and HD SDI is included
with the VIODC. The SDI standard is a high-speed serial interface used to carry video over
coax cable. It is generally used in a studio environment. The SDI system includes cable
equalizers and genlock circuitry. (The VSK is a demonstration platform only. For HD-SDI
verification and compliance, Xilinx recommends using the Cook Technologies SDV board).

XCV2P7 FPGA
The VSK also includes a Xilinx XCV2P7 FPGA, which is used to interface to the various
video interfaces, as well as the ML402 main board. It features Multi-Gigabit Transceivers
(MGTs), which are used to support the SDI interface. It also enables the VIODC to be used
in a stand-alone fashion.

http://www.xilinx.com
http://www.irvine-sensors.com/vision.html
http://www.micron.com/products/imaging/applications/auto.html
http://www.cook-tech.com/ctxil206.html

Video Starter Kit www.xilinx.com 21
UG217 (v1.5) October 26, 2006

VSK Demo Application
R

VSK Demo Application
Several demo applications are included with the VSK. One demo (Figure 1-3) shows how
the VSK can be configured as a video processor. This demo application is included in the
VSK_diagnostics design included in the VSK examples directory. It can be used to apply
some common video filters to the video from the RGB LVDS camera or other video sources.

Figure 1-4 illustrates a common video processing pipeline. The design implements a
sequence of video operations including gamma correction, Bayer filtering, and color space
correction. It is implemented using the System Generator blockset for MATLAB Simulink.
System Generator is used to export this design as an EDK pcore, which is a standard Xilinx
peripheral for embedded processors. After a pcore is created, it can be used in any Xilinx
EDK project. Any EDK project can use a pcore, even if they are targeted to other
development boards or FPGAs.

The RGB camera processing pipeline design has a video input and a video output port. In
the complete application, these video buses are connected to other pcores implementing

Figure 1-3: RGB Camera Demo Setup

Figure 1-4: RGB Camera Video Processing Pipeline

http://www.xilinx.com

22 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 1: Video Starter Kit Overview
R

video processing, memory or I/O to the VIODC. The block diagram of the VSK diagnostics
program is shown in Figure 1-5.

For this application, the embedded MicroBlaze processor is used to configure the video
processing pipeline. It communicates with memories and registers in the video pcores via
System Generator shared memory primitives. The hardware logic and software drivers
required by MicroBlaze to communicate with the shared memories in the pcore are
automatically generated by System Generator during compilation.

The video processing demo is included in a pcore named vop for Video Op. The Sysgen
design is named vsk_vid_op_6.mdl. This demo is part of the VSK diagnostic program and
can be found in the VSK examples directory. For more information, refer to Chapter 5,
“VSK Diagnostics and Support Tool Kit.”

Software and Application Updates Available Online
VSK software and applications are supported by a VSK web page and the latest software
and applications versions can be found there. The software support is integrated into
System Generator and will be upgraded as new System Generator versions are released.
New applications for the VSK will be posted on the VSK web page as they are developed.

Software Support Package Overview
The VSK includes hardware, software, and applications. Xilinx software is used to create
applications which run on the VSK and Xilinx FPGAs. Three basic software flows are
supported. These are illustrated in Figure 1-6, Figure 1-7, and Figure 1-8.

Figure 1-5: Block Diagram of VSK RGB Camera Demo Included in the VSK

Custom Peripherials

VIODC

RS232 PC
Terminal

LVDS
Camera

MicroBlaze
Processor

vio_if
Video I/O p-core

ddr_if
DDR Memory p-core

vop
Custom Video Processor

DVI or
VGA

Display

Embedded
Microprocessor ug217_ch1_05_1128_05

Figure 1-6: Software Simulation Flow

design.mdl Simulink Simulink Software
Simulation

ug217_ch1_06_112805

http://www.xilinx.com
http://www.xilinx.com/products/vsk

Video Starter Kit www.xilinx.com 23
UG217 (v1.5) October 26, 2006

Software Support Package Overview
R

Software Simulation
In the first flow, called software simulation, Simulink designs that are constructed from the
System Generator blocks are compiled and run in MATLAB Simulink. Figure 1-6 shows
the software flow for software simulation. This flow is quick and easy to develop and
offers good performance using the built-in MATLAB floating-point matrix operations.
Larger systems, however, slow down significantly, and it is difficult to use this approach
with live video streams. Additionally, problems occur when the design is implemented in
fixed-point blocks for FPGA implementation. This can result in very low pixel rates due to
poor simulation performance, often requiring hours per frame of video.

Hardware Implementation
The second software flow (Figure 1-7) compiles the user’s design to hardware and runs the
hardware on the VSK video development platform. This allows the video IP to be tested
using live video streams.

Hardware Co-Simulation
The third type of software flow (Figure 1-8) is a hybrid of the software simulation and
hardware deployment called Hardware-in-the-Loop co-simulation. In it, the bulk of the
design is generated as in the real-time deployment flow. However, hardware data streams
can be routed to the Simulink software simulation using the Xilinx System Generator
Hardware co-sim engine.

The advantage of this mode is that small video filters which are part of a larger video
processing system can be run in simulation, while the bulk of the video system is
implemented in real time hardware. If buffering is employed, the software simulation can
operate on stored video frames from the video stream at a reduced frame rate. Using the
Ethernet Co-Simulation, near real-time video rates can be achieved. This translates to a few
frames per second using 640 x 480 video.

Figure 1-7: Real-Time Deployment Flow

Xilinx Sysgen
P-core Export

Xilinx EDK
Generation

Bitstream

Xilinx Place
and Route

System HDL Generation

Application HDL and
Driver Generation

Bitstream Generation

JTAG Bitstream
Configuration

User Design
design.mdl file

User Design
driver.c file

VSK

ug217_ch1_07_112805

http://www.xilinx.com

24 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 1: Video Starter Kit Overview
R

The pre-generated bitstream and co-sim subsystem can be generated from another system
generator diagram or it can be an existing EDK project. The user can use the EDK import
feature in System Generator to import an EDK project as a co-sim block.

VIODC HDL Support Package
While the above software flows leverage the advantages of developing video IP in System
Generator/MATLAB/Simulink, users may prefer to use traditional HDL design flows.The
Video Starter Kit also includes two demonstrations written in Verilog. These examples
exercise all the video functions on the VIODC and are generally self-explanatory. In
addition, these demos can run on a stand-alone VIODC board.

Refer to the DVI, VGA, and Component Video Demonstration User Guide and the SDI Video
Demonstration User Guide for further information.

System Generator Support
System Generator includes several features that are useful for developing video
applications with the Video Starter Kit. These are outlined below and additional
documentation for each of these features can be found in the VSK document package. In
addition, tutorials are included in the examples directory to assist in learning to use these
powerful features.

DDR Memory Controller
The VSK includes a capable multi-port memory controller. The controller supports the
DDR memory on the ML402 board. It can also be targeted to other boards and is fully
configurable for port size and number of ports. The controller contains a simulation model
and can be run in HDL co-simulation mode, or compiled to run in real time and as part of
hardware co-simulation block.

Figure 1-8: Hardware-in-the-Loop Flow

User Design
design.mdl file

Pre-Compiled
I/O Subsystem

cosim.mdl

Pre-Compiled
Bitstream

VSK

Ethernet

.dll

Simulink
Simulation

Xilinx System
Generator HW
Co-Sim Engine

Pre-Generated
Video System

Semi Real-Time
Hardware-Software

Communication

Simulink Simulation

ug217_ch1_08_112805

http://www.xilinx.com

Video Starter Kit www.xilinx.com 25
UG217 (v1.5) October 26, 2006

System Generator Support
R

Pcore Export and EDK Import
Pcore export is a new method of generation from Simulink diagrams that allows the user
diagram to be imported into any EDK project as a Pcore. Conversely, EDK import allows
EDK projects to be imported into System Generator diagrams. Pcore export is used to
generate the three pcores in the VSK diagnostic demo from System Generator diagrams.

Multiple Subsystem Generator
The Multiple Subsystem Generator flow allows System Generator models to include
multiple clock domains. This flow is used to generate the design for the VIODC FPGA,
which is included in the VSK diagnostics program.

Ethernet Co-Sim
High-speed Ethernet co-sim and point-to-point Ethernet co-sim are supported by the
System Generator for the VSK. To achieve near real-time video rates, reusable buffer blocks
are included in the Ethernet demos that are included in the VSK.

Diagnostics
A diagnostics program called the vsk_diagnostics is included with the VSK. Refer to
Chapter 5, “VSK Diagnostics and Support Tool Kit” for more information. The diagnostics
include System Generator designs for the VIODC FPGA, and three pcores integrated into
an EDK project for the ML402 FPGAs. They also include software routines to configure the
video interface chips on the VIODC and to control the video processing pcore, video
interface pcore, and DDR memory pcore.

Demonstrations
Several demonstration designs are included with the VSK.

MPEG Decoding Demo

The VSK diagnostics include an MPEG-4 demo, which can be run from the Compact Flash.
Refer to the Video Starter Kit Quick Start Guide (UG239) and the MPEG-4 Demonstration User
Guide (UG234) for more details.

VSK Diagnostics Camera Demo

The VSK diagnostics also include a camera demo, which can be run from the Compact
Flash. Refer to Video Starter Kit Quick Start Guide (UG239) and Chapter 5, “VSK Diagnostics
and Support Tool Kit” for more details.

SDI Demo

A demo featuring the SDI interface and written in Verilog is available for the VIODC. Refer
to the documents SDI Video Demonstration User Guide in the VSK document package for
further information.

http://www.xilinx.com

26 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 1: Video Starter Kit Overview
R

Video Demo in Verilog

A demo which exercises all the video interfaces on the VIODC is available. Refer to the
documents DVI, VGA, and Component Video Demonstration User Guide in the VSK document
package for further information

http://www.xilinx.com

Video Starter Kit www.xilinx.com 27
UG217 (v1.5) October 26, 2006

R

Chapter 2

Developing Video Applications
In System Generator

Overview
Figure 2-1 shows a typical video processing system. In this system, a microprocessor is
used to control a video pipeline consisting of a video source and sink, a large memory for
storage of video data, and a video processing system.

As the video system is being developed, these functions can be implemented in real
hardware or in simulation. Simulation of video processing applications creates special
challenges for simulation due to both the real-time nature of video streams and the
enormous amount of video data required per frame.

Typically, video development requires real-time hardware to prove the video operation on
real-time data streams, as well as a simulation environment to develop and test the video
processing components. The Video Starter Kit (VSK) provides both for simulation and real-
time operation for each of the components in a video system.

Real-Time Operation
Real-time operation (Figure 2-2) is provided by the combination of the VIODC and ML402
development boards. The VIODC provides video sources and sinks to the ML402 and the
ML402 is used for real-time processing of the video streams. The ML402 board includes a
state of the art Xilinx Virtex-4 FPGA for real-time video processing, memory, and
communications peripherals. Video memory is provided on the ML402 board in the form
of DDR SDRAM memory. The ML402 board supports a MicroBlaze processor with a

Figure 2-1: Video System Diagram

Video
Source

Video
Memory

Video
Function

Video
Sink

Micro-
processor

Host
Interface

Control

Video

ug217_ch2_01_112905

http://www.xilinx.com

28 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 2: Developing Video Applications In System Generator
R

standard set of peripherals. Host communications can be supported over RS-232, USB, or
Ethernet ports.

Hardware-in-the-Loop Video Simulation
FPGAs are software programmable, yet they have the unique ability to operate on real-
time video streams at clock rates well over 300 MHz. Using FPGAs to process real-time
data during algorithm development is known as Hardware-in-the-Loop Co-Simulation.
Hardware-in-the-Loop Co-Simulation (also known simply as hardware co-sim) can be
used to quickly demonstrate video processing functions at real-time rates.

Hardware-in the Loop Co-Simulation
Xilinx System Generator provides the ability to replace Simulink subsystems with a
hardware co-sim token. For example, the Figure 2-4 shows a video processing block which
implements a gain and offset function on a single video channel. In Figure 2-5 the video
processing block has been compiled into a hardware co-sim block.

When the Simulink Play button is pressed to start simulation, the FPGA design containing
the gain and offset function is loaded to a development board such as the ML402. Then
data is passed from the Simulink source to the function in the FPGA, the clock is stepped
automatically, and output data is passed back to the Simulink scope.

Hardware co-sim can also be used with buffer blocks to substantially increase data
bandwidth and throughput. When used with Mathworks Video and Image Acquisition
Blockset, hardware co-sim can be used to provide non-real-time video simulation.

Figure 2-2: Real-Time Video Processing

Video Starter Kit

VIODC
Video I/O
Daughter Card

ML402
Video Function
in FPGA

ug217_ch2_02_11205

Real-Time
Video

Host

Figure 2-3: Hardware-in-the-Loop Video Processing

ML402
Board

SimulinkReal-Time
Video

ug217_ch2_03_122005

http://www.xilinx.com

Video Starter Kit www.xilinx.com 29
UG217 (v1.5) October 26, 2006

Software Simulation Modes
R

Software Simulation Modes
During development, it is very useful to be able to simulate video processing blocks using
real video data streams. Software simulation (shown in Figure 2-6) is supported for the
VSK using Mathworks Simulink software in conjunction with the Xilinx System Generator.
During simulation, real-time operation is simulated by operating on captured video in the

Figure 2-4: Simulink Diagram Implementing a Gain and Offset Function
Using Xilinx System Generator Blocks

Figure 2-5: Gain and Offset Function Compiled to a Hardware Co-Sim Token

http://www.xilinx.com

30 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 2: Developing Video Applications In System Generator
R

video memory at reduced video clock rates. Although software simulation is not as fast as
real-time hardware operation, Simulink provides a quick and facile method of developing
and testing video processing functions. In addition, standard video processing functions
available for Simulink, such as the Image Processing Toolbox, allow video processing
functions to be quickly prototyped and tested.

The infrastructure required to source and sink video streams from the VSK to the Simulink
simulation is provided by the Xilinx System Generator co-simulation feature, which allows
simulation diagrams to communicate directly with hardware. System Generator also
provides the ability to simulate flowgraphs constructed from Xilinx Blockset components,
as well as VHDL and Verilog black boxes using HDL simulators such as ModelSim.

Hardware-Software Systems
Video systems often require a control processor. The processor typically is used to
communicate with a host system, set up video processing operations, compute coefficients
and generally operate as a low rate data processor. Xilinx System Generator and the
Embedded Development Kit (EDK) software tools can be used together to implement and
simulate a system with a processor and FPGA video processor functions operating on live
video streams.

Generating a Video Processor as an EDK Pcore

The Xilinx EDK can be used to construct processor systems with integrated memory and
peripherals. Processor peripherals, such as memory and Ethernet interfaces, can be
included into EDK projects and are known as processor cores or pcores. Xilinx System
Generator can be used to generate custom pcores for functions such as video processing.
Figure 2-7 illustrates a processor system with standard and custom peripherals. The
processor is used to configure the video processing pipeline, and video data is passed
directly between stages of the video pipeline. This particular configuration with three
custom pcores is used for the VSK camera processing demo, VSK, and the VSK diagnostics.

Figure 2-6: Software Simulation Using Live Video Signals with Simulink

Real-Time
Video

Video
Starter

Kit

Video Function
in Simulink

ug217_ch2_04_112905

Figure 2-7: MicroBlaze Processor with Peripherals and Three Custom
Video Peripherals

Internal
Memory

Ethernet

RS232

Video I/O

DDR Memory

Custom
Video Processor

Standard Peripherals Microprocesor Custom Peripherials

MicroBlaze
Processor

ug217_ch2_05_112905

Video

http://www.xilinx.com

Video Starter Kit www.xilinx.com 31
UG217 (v1.5) October 26, 2006

Hardware-Software Communication
R

The above system can be used to implement and test video peripherals. After developed
and validated, a pcore peripheral is able to be incorporated into any EDK system. System
Generator can be used to construct and test EDK pcores. This facility is available as the
EDK Export compilation target in System Generator.

Hardware-Software Communication

Memory Mapped Hardware
Hardware is often controlled by software programs. This requires communication
channels between the hardware peripheral and the software program. System Generator
includes special register, FIFO, and memory blocks which can be automatically mapped
into the processor’s function space. These blocks are termed shared memories because they
are shared between the processor and the System Generator model diagram. These blocks
make it simple to use a processor to read and write hardware memories. See Figure 2-8.

MicroBlaze Processor Communicating with a Shared Memory
When a diagram (shown in Figure 2-9) containing shared memory blocks is compiled as a
EDK pcore, the shared memory objects are mapped into the function space of the C
program, using an FSL communications link.

Figure 2-8: System Generator Shared Memory Blocks

Figure 2-9: MicroBlaze Processor Communicating with a Shared Memory

Memory
Mapped
Shared
Memory

rd/wr

wr_data

rd data

MicroBlaze
Processor

FSL
Link

Address
Decode

Simulink Model

ug217_ch2_06_112905

http://www.xilinx.com

32 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 2: Developing Video Applications In System Generator
R

Hardware-Software Co-Simulation
Often both hardware and software are developed concurrently. The development of video
processing peripherals generally require the development of both hardware and software
drivers for the hardware. This task is eased if software co-simulation is available as
hardware is simulated. Hardware-software co-simulation is available as part of System
Generator hardware co-simulation. This facility is named EDK co-simulation.

EDK Co-Simulation

System Generator allows for the incorporation of a MicroBlaze block into a Simulink
diagram. When a System Generator diagram that includes a MicroBlaze block is compiled
and run under hardware co-simulation, the processor is able to communicate with any
shared memory objects which are also in the diagram. For example in Figure 2-10, the
MicroBlaze processor is able to read from register X and write to register Y. In addition, a C
header file containing function calls is generated to allow for easy communication with
shared memory objects.

If the EDK project includes a Serial Port, the user can interact with the processor via the
RS-232 interface.

VSK Video Processor Development System
The VSK can be used to develop video processing peripherals as EDK pcores. To abstract
the low level details of the video processing, a pre-built system called VSK1 has been
developed to provide video streams directly to a user pcore. It includes a processor and
pcores to interface to the VIODC and DDR memories and process video. These pcore
designs can be used as is or modified to create new pcores.

The ML402 board and the VIODC are configurable hardware systems which both contain
FPGAs. FPGA designs written in System Generator have been developed for each of these
FPGAs, and MicroBlaze software drivers have been developed to provide access to the
various functions incorporated into the FPGAs. These FPGA designs and software drivers
are used in the VSK diagnostics and demos. As a set, they provide a video pcore
development environment for Video processors and are described in the following
sections.

Figure 2-10: EDK Import with Registered IO

http://www.xilinx.com

Video Starter Kit www.xilinx.com 33
UG217 (v1.5) October 26, 2006

VSK Video Processor Development System
R

ML402 FPGA

The ML402 software and hardware are partitioned into a MicroBlaze and three pcores.

MicroBlaze Subsystem

The MicroBlaze subsystem consists of a simple MicroBlaze processor, a 64-KB internal
memory and an RS-232 system. It can be extended to include access to external SRAM and
the various peripherals on the ML402 board.

vio_if Pcore

The vio_if pcore is used to communicate with the VIODC over the vio bus. It supports one
video input and one video output bus. Each video bus is 26 bits plus a pixel enable. This
vio_if pcore also provides IIC communication to the devices supported by the VIODC
FPGA, as well as a small serial bus to communicate with internal VIODC registers.

ddr_if Pcore

The ddr_if pcore provides access to DDR memory. It is designed to store and playback
video sequences and provide access to the MicroBlaze. The DDR pcore is built around the
Multiport System Generator DDR Memory controller.

vop Pcore

The pcore labeled vop is the pcore which contains a basic video processing pipeline. The
MicroBlaze project provides video input and output streams to the core. The existing core
can be replaced if modified to develop a new video processor.

VIODC FPGA

The Video Starter Kit contains an XCV2P7 FPGA on the VIODC. An FPGA design has been
developed to allow the MicroBlaze processor to configure the various video interface ICs
and select from among the various video sources. The VIODC connects to the ML402
board over a 64-pin interface bus. This bus is named the VIOBUS.

The VIODC provides an interface to the various video interface ICs and routes video to
and from the ML402 FPGA.

Figure 2-11: ML402 FPGA

‘vio_if’ Video
I/O

‘ddr’ Memory

‘vop’ Video
Processor

input
mux

output
demux

Video In

V ideo Out

Video In

.

.

.

Video Out

.

.

.

ctrl ML402 FPGA - VIO

MicroBlaze
Processor

VIODC FPGA

ug217_ch2_07_11205VIO P-coresMicroprocessor VIOBUS

http://www.xilinx.com

34 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 2: Developing Video Applications In System Generator
R

Video Sources

The VSK allows for various video source to be used to source a video stream. Live video
streams are piped down from the VIODC card. The VIODC supports VGA, DVI, SDI, HD
component video, SD S-video, and composite video. In addition, test patterns can be used
to create live video streams. When the viodc.bit FPGA program is loaded to the VIODC,
video sources available from the VIODC can be selected by configuring the VIODC using
the MicroBlaze. (SDI video input is not available in version 1 of the VIODC program).
During simulation, video sources can include MATLAB matrices and MATLAB Simulink
Image Processing Blockset video sources.

Video Sinks

The Video Starter Kit allows video streams to be driven to any of the video output ports.
The VIODC supports VGA, DVI, SDI, HD component video, SD S-video, and composite
video outputs. When the viodc.bit FPGA program is loaded to the VIODC, video sources
available from the VIODC can be selected by configuring the VIODC using the MicroBlaze.
During simulation, video can also be routed to MATLAB matrices and MATLAB Simulink
Image Processing Blockset video displays.

An additional VGA output suitable for VGA or 525P video output is provided on the
ML402 FPGA. It can also be used as a diagnostic display.

http://www.xilinx.com

Video Starter Kit www.xilinx.com 35
UG217 (v1.5) October 26, 2006

R

Chapter 3

EDK Integration

Overview
Embedded processors are important components inside any MVI system. The Xilinx
Embedded Development Kit (EDK) is an integrated software solution for designing
embedded processing systems, and the MicroBlaze™ 32-bit soft-processor core is
supported by the EDK. This chapter details the design-flow for incorporating a MicroBlaze
processor into MVI framework. In particular, it describes using the EDK processor block in
System Generator and the automatically generated software drivers to read and write data
to the System Generator design.

Two methods are described:

• System Generator design exported into an EDK system

• EDK project imported into a System Generator design for hardware co-simulation.

Communication between an EDK processor and the System Generator design is
accomplished via shared-memories––registers, FIFOs, and RAMs.

MicroBlaze Processor Interface
The MicroBlaze processor interface is exposed through the EDK processor block provided
by System Generator. Figure 3-1 shows the communication between user-defined logic
and the MicroBlaze processor.

Memories used in a user’s design form the processor interface into the user-logic. These
memories are associated with a MicroBlaze processor through the EDK processor block’s
GUI interface. After an association is made, System Generator automatically creates a
memory-map that marshals data to and from the processor. Memories that are associated
to the processor can be accessed using C-code device drivers automatically generated by
System Generator.

Figure 3-1: Memory-Mapped User Logic

Reg

FIFO

RAM User
Logic

MicroBlaze Memory
Map

User
Logic

ug217_ch3_01_111005

http://www.xilinx.com

36 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 3: EDK Integration
R

EDK Pcore Export Mode
When used in pcore export mode, the memory map block shown in Figure 3-1 and all the
blocks to its right are packaged into a pcore peripheral. Software drivers and
documentation for the memory-map interface are also generated and delivered with the
peripheral.

EDK Import Mode
When used in EDK import mode, an EDK project file is imported into System Generator by
running the EDK Import Wizard. When the import wizard completes, the EDK system is
pulled into the System Generator design as a black-box. During the import process, the
EDK system is augmented with Fast Simplex Link (FSL) interfaces that communicate with
the memory-map shown in Figure 3-1.

Adding a Processor to a System Generator Design

The EDK Processor Block
A processor can be added to a System Generator design by using the EDK processor block,
which can be found in the System Generator Index and Control logic libraries. Figure 3-2
shows an image of the EDK Processor block.

Double clicking the block opens the block’s GUI, shown in Figure 3-3. Refer to the System
Generator User Guide for a more detailed explanation of the GUI.

Interfacing the EDK Processor to User Logic
Shared-memories instanced in a user’s design can be associated to an EDK Processor by
adding that memory into the processor’s memory map. Figure 3-3 shows an EDK
Processor block with four shared memories added to the memory-map: a RAM, a register,
and two FIFOs. Memories visible to the EDK processor are listed in the Available Memories
pull-down menu. Selecting a memory and pressing the Add button adds that memory into
the processor’s memory-map. Right-clicking on the Memory Maps tree-view reveals a pop-
up menu that provides services, such as allowing memories to be removed from the
memory map and re-syncing the memory map. Re-syncing a memory map regenerates the
decoder logic used to marshal data to their respective memories.

Figure 3-2: EDK Processor Block

http://www.xilinx.com

Video Starter Kit www.xilinx.com 37
UG217 (v1.5) October 26, 2006

Adding a Processor to a System Generator Design
R

Exporting the Design as a Pcore
The Xilinx Platform Studio (XPS) is a tool that is shipped with the EDK. XPS is an
integrated development environment that allows a processor to be created, configured
with IP, and for software to be written and compiled into the processor’s bitstream. When
configuring a processor in XPS, a user is presented with a list of available IP that can be
connected to a processor. Each IP that can be added on as a peripheral to a processor must
be packaged as a pcore. System Generator provides a compilation target that compiles a
user design into a pcore.

To export a user design as a pcore, the EDK processor block must be used in conjunction
with the Export as a pcore to EDK compilation target found in the System Generator block.
The EDK processor must to be configured for EDK export mode. This is done by setting
Configure Processor For to EDK Pcore Generation as shown in Figure 3-3.

After configuring the EDK processor, an EDK pcore can be generated by using the System
Generator compilation GUI. Refer to Figure 3-4. Double click on the System Generator
block and set Compilation to Export as a pcore to EDK. Press the Settings… button to bring up
the EDK Export Settings dialog box. This controls where the pcore is exported to and
assigns a version number to the pcore.

Refer to System Generator Compilation Types chapter in the System Generator User Guide for
more detailed information on the EDK export compilation target.

Figure 3-3: EDK Processor GUI

http://www.xilinx.com

38 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 3: EDK Integration
R

The pcore compilation process produces a collection of files organized in a specific
directory structure. The files and directory structure are listed in Table 3-1.

A tutorial showing this design-flow can be found in the Hardware Software Co-Design in
System Generator chapter in the System Generator User Guide.

Figure 3-4: Export as a Pcore to EDK

Table 3-1: Pcore Directory Structure

Directory
Name

File Type/
Extension

Description

data mdd, mpd
pao, tcl

Data files used by the EDK to configure a pcore.
The mdd and tcl files are used by LibGen to
generate device drivers for the pcore. The mpd
and pao files describe the interface of the pcore.

doc pdf An Adobe PDF file documenting the memory-
map interface and also providing information and
examples on how to read and write to the pcore.

doc/html/api html An html version of the PDF file.

hdl
vhdl
verilog

vhd
v

hdl directory contains two other directories:
VHDL files used by the pcore.
Verilog files used by the pcore.

netlist edn, ngc Precompiled netlists used in the pcore.

src Makefile, c, h Template C header and source files used during
device driver generation.

http://www.xilinx.com

Video Starter Kit www.xilinx.com 39
UG217 (v1.5) October 26, 2006

Adding a Processor to a System Generator Design
R

Importing an EDK Project into System Generator
A project created in the EDK can be imported into a System Generator project by using the
EDK Import Wizard. Projects imported using the wizard can only contain one MicroBlaze
processor. The EDK Import Wizard can be launched through the EDK processor block GUI

Figure 3-5 shows one way to launch the EDK Import Wizard. If the EDK project string is
empty, selecting HDL netlisting in the Configure processor for parameter launches the EDK
Import Wizard.

If an EDK project has been imported previously, the EDK project field contains the path to
the project that has been imported. If the processor configuration for that project has
changed, the import wizard should be rerun. This can be achieved by clicking on the
Import button.

The EDK Import Wizard (Figure 3-6)modifies the given EDK system by adding in a pair of
FSL FIFOs that will be used by the memory map created by the EDK processor block when
shared-memories are associated with the processor. The EDK is next called upon to create
the processor netlist. Finally, the EDK Import Wizard creates the wrapper and associated
configuration files required for the netlists to be imported into System Generator.
Following this, when the EDK processor block is configured for HDL netlisting, System
Generator is capable of generating netlists containing the MicroBlaze processor. This
allows designs containing a MicroBlaze processor to be compiled for hardware co-
simulation.

Figure 3-5: Launching Import Wizard

Figure 3-6: EDK Import Wizard

http://www.xilinx.com

40 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 3: EDK Integration
R

An EDK Processor block can be compiled into a co-simulation block by selecting one of the
hardware compilation targets available, as shown in Figure 3-7. For the ML402 board,
three options are available: JTAG, network-based, and point-to-point. For information on
hardware co-simulation, refer to Chapter 4, “Hardware Co-Simulation.”

If an EDK processor block is detected during generation of a hardware co-simulation
block, the Software tab of the co-simulation block’s GUI becomes active (Figure 3-8). The
Software tab contains path locations to EDK Project and also to the Block Memory Map
(BMM) file that was generated with the co-simulation block. The BMM file is used by the
EDK to update the processor with compiled C code.

Code written in the EDK Project can be compiled and updated into the co-simulation block
by using the Compile and update bitstream button in the Software tab.

Figure 3-7: Hardware Co-Simulation Options

Figure 3-8: Software Tab

http://www.xilinx.com

Video Starter Kit www.xilinx.com 41
UG217 (v1.5) October 26, 2006

Writing Software Code
R

A tutorial showing this design-flow can be found in the “Hardware Software Co-Design in
System Generator” chapter in the System Generator User Guide.

Writing Software Code
Shared-memory blocks associated to an EDK Processor can be accessed by name inside C
code. When System Generator creates the memory map, template C-code software drivers
and their corresponding documentation are created. This C-code driver is inflated by the
EDK during the LibGen phase of compilation in the EDK software compilation flow.

The documentation generated for a pcore can be found in the doc directory in a pcore. A
PDF and an HTML version of the documentation are provided, and these can be accessed
from the EDK.

Figure 3-9 shows a screen capture of a Xilinx Platform Studio (XPS) instance. The
peripheral sha256pcore_sm is a pcore generated with System Generator. In this EDK
project, that pcore has been added to the system and renamed sha. Right click on the
peripheral in the XPS assembly view to call up the popup menu shown in Figure 3-9.
Selecting View API Documentation shows the documentation for the peripheral. The
documentation contains information on which header files to include, the naming
convention of the memory-map identifiers, the software driver function prototypes, and
example code snippets.

The generated software drivers contain six basic functions for accessing shared memories.
The <inst> label in the function list shown below refers to the instance name of the
pcore. When a user-defined pcore is added into an EDK project, a unique instance name

Figure 3-9: Xilinx Platform Studio - Assembly View

http://www.xilinx.com

42 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 3: EDK Integration
R

can be given to that pcore. In Figure 3-9 shows a pcore that has been named sha. As such,
when reading data from that peripheral, the read function is sha_Read().

When an EDK project is imported into System Generator, the EDK Import Wizard
automatically configures the system with a stub peripheral representing the
communications between the EDK and the System Generator peripheral. The peripheral is
named xlsg_iface. As such, when reading data from that peripheral, the read function
is xlsg_iface_Read().

int <inst>_Read (unsigned int memName,
 unsigned int addr,
 unsigned int* val)
int <inst>_ArrayRead (unsigned int memName,
 unsigned int startAddr,
 unsigned int transferLength,
 unsigned int** valBuf);
int <inst>_Write (unsigned int memName,
 unsigned int addr,
 unsigned int val);
int <inst>_ArrayWrite (unsigned int memName,
 unsigned int startAddr,
 unsigned int transferLength,
 const unsigned int* valBuf);
unsigned int <inst>_GetFifoDataCount (unsigned int memName);
unsigned int <inst>_GetFifoEmptyCount (unsigned int memName);

Figure 3-10 shows a snippet of the automatically generated documentation. This shows
that the pcore has four shared-memories that can be accessed: a register, two FIFOs, and a
RAM. The first column shows the name of the shared-memory, as defined in the System
Generator diagram. Column 3 shows the identifiers that should be used in the C-code
drivers.

Figure 3-10: Memory Map Documentation

http://www.xilinx.com

Video Starter Kit www.xilinx.com 43
UG217 (v1.5) October 26, 2006

Writing Software Code
R

For instance, reading from the memory called checksum should be done as follows:

sha_Read(SHA_CHECKSUM, 0, &val);

The memory name to read from is <INST>_CHECKSUM. In this case, the instance of the
pcore is sha. Reading should be done from address 0 of that shared memory and the result
placed into the register called val.

When reading and writing to RAMs, the address is specified as an index into that memory.
When reading and writing to registers and FIFOs, address refers to their address in the
memory map. For instance, reading the percent full port of the memory named message
is performed with the following code:

sha_Read(SHA_MESSAGE, SHA_MESSAGE_PERCENTFULL, &val);

The memory name to read from is SHA_MESSAGE and the address to read from is
SHA_MESSAGE_PERCENTFULL.

http://www.xilinx.com

44 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 3: EDK Integration
R

http://www.xilinx.com

Video Starter Kit www.xilinx.com 45
UG217 (v1.5) October 26, 2006

R

Chapter 4

Hardware Co-Simulation

Hardware Co-Simulation Overview
System Generator provides hardware co-simulation interfaces that make it possible to
compile a System Generator diagram into an FPGA bitstream and associate this bitstream
with a new run-time hardware co-simulation block. A run-time block is a System
Generator block that serves as a proxy between the simulation environment and the
underlying FPGA hardware. When the design is simulated in Simulink, results for the
compiled portion are calculated in hardware instead of software.

Co-Simulation Communication Primitives
System Generator provides different interfaces that allow a Simulink design to
communicate with an FPGA platform during hardware co-simulation. The types of
interfaces that should be used depend on the particulars of the design. Each interface is
briefly described below.

Ports
Ports are the most common interface for communicating with FPGA co-simulation
hardware. Here the term port is used to include both System Generator Gateway blocks
and Simulink Inport/Outport blocks. See Figure 4-1

When a design that includes a port is compiled for hardware co-simulation, a
corresponding port is created in a co-simulation memory map inside the FPGA that can be
written to or read from by the PC during co-simulation. A port with an equivalent name
and data type is also included on the run-time co-simulation block. This means that each
port in the design translates into a corresponding port on the run-time co-simulation block.
In this manner, the external interface of a run-time co-simulation block is created to match
the interface of the subsystem for which it was compiled. The ordering of the ports on the
run-time co-simulation block follows these rules:

• Simulink Inport and Outport blocks are added to a run-time co-simulation block in
order of port indexes. For example, if a Simulink Inport has an index of 1, it will be the

Figure 4-1: Ports

http://www.xilinx.com

46 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

first input port on the co-simulation block. An Outport with an index of 2 will be the
second output port on the co-simulation block.

• Because Gateway blocks lack an explicit index or ordering in Simulink, these ports are
added to a run-time co-simulation block in alphabetical order. If a design contains
both Gateways and Inport/Outport blocks, the Gateway ports appear last (i.e., they
have a higher index).

Shared Register
A To Register, From Register or shared register pair can be generated and co-simulated in
FPGA hardware. Here a shared register pair is defined as a To Register block and From
Register block that specify the same name (e.g., Bar). See Figure 4-2. In hardware, a shared
register is implemented using a synthesizable register component (for VHDL) or a module
(for Verilog).

When a design that includes a shared register pair is compiled for hardware co-simulation,
the pair is replaced by a single register instance. Both sides of the register are attached to
user design logic; that is, logic that originated from the original System Generator model. In
this case, control of the register is not shared between the PC and FPGA hardware since all
register ports are attached to user design logic. Compiling a shared register pair to
hardware is equivalent to compiling a System Generator Register or Delay block.

Compiling a single To Register or From Register block for hardware co-simulation results
in a different type of implementation. A single register is still created to replace the To or
From Register block. Only in this case, the register connects to both the PC and FPGA
memory map logic. The side of the register in the original model remains connected to user
design logic. The other side of the register attaches to memory map interface logic.

For designs that use hardware co-simulation, shared register pairs are typically distributed
between software and FPGA hardware. In other words, one half of the pair is implemented
in the FPGA, while the other half is simulated in software using a To or From Register
block. When data is written to a software To Register block, the hardware register is
updated to with the same data. Similarly, when data is written into the hardware register,
the same data is read by the From Register software block. A software shared register can
connect to a hardware shared register simply by specifying the name of the shared register
as it was compiled for hardware co-simulation.

Shared Memory
Compiling a shared memory block for hardware co-simulation adds an addressable block
of memory into the co-simulation memory map (Figure 4-3). Shared memory blocks can be
configured with a lockable or unprotected access protection mode. This section touches on
both protection modes since they are involved during co-simulation semantics.

Figure 4-2: Shared Register Pair

http://www.xilinx.com

Video Starter Kit www.xilinx.com 47
UG217 (v1.5) October 26, 2006

Co-Simulation Communication Primitives
R

In lockable access mode, the System Generator co-simulation hardware must acquire lock
over the shared memory object before it can access its contents. When the hardware
acquires (releases) lock of the shared memory, the memory contents are transferred to
(from) the FPGA using a high-speed data transfer.

Two images of the shared memory data are used when a lockable shared memory is co-
simulated. One memory image is stored using dual port memory in the FPGA. This image
is accessed by the System Generator hardware co-simulation design and co-simulation
memory map logic. The other image is implemented as a shared memory object on the host
PC. This software shared memory image is accessed by any software shared memory
objects used in a design.

A software process or hardware circuit that wishes to access the shared memory must first
obtain the lock. If the hardware has lock of the memory, no software objects can access the
memory contents. Likewise, if a software object controls the memory, the hardware cannot
read or write to the memory. Note that lockable hardware shared memories include
additional logic to handle the mutual exclusion.

Having two shared memory images requires synchronization between software and
hardware to ensure the images are coherent. This synchronization is accomplished by
transferring the memory image between software and hardware upon lock transfer.
System Generator performs high-speed data transfers between the host PC and FPGA.

Unprotected shared memory blocks can be written to or read from at any time during co-
simulation––the memory has no notion of mutually exclusive access. To ensure data
coherency between software and hardware, a single image of the shared memory data is
shared between hardware and software. This image is stored in the FPGA using dual port
memory that is accessible as part of the co-simulation memory map. System Generator
allows both hardware design logic and other software-based shared memory objects on the
host PC to access the shared memory data concurrently. When software shared memory
objects read or write data to the shared memory, System Generator seamlessly handles
communication with the hardware memory resource.

FIFO
A To FIFO, From FIFO, or shared FIFO pair can be generated and co-simulated in hardware.
A shared FIFO pair is defined as a To FIFO block and From FIFO block which specify the
same name (e.g., Bar) (Figure 4-4).

Figure 4-3: Shared Memory

Figure 4-4: Shared FIFO Pair

http://www.xilinx.com

48 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

In hardware, a shared FIFO is implemented using the FIFO Generator core. The core is
configured to use independent (asynchronous) clocks and block memory for data storage.
Shared FIFOs allow the user to safely transfer data to and from the FPGA platform in co-
simulation designs that use a free-running clock mode. Shared FIFOs can also be used to
support burst transfers during co-simulation for applications with high throughput
requirements.

When a shared FIFO pair is generated for co-simulation, a single asynchronous FIFO core
replaces the two software shared FIFO blocks. The read/write FIFO sides are attached to
user design logic (i.e., logic derived from the original System Generator model) that attached
to the From FIFO and To FIFO blocks, respectively (Figure 4-4). Because both FIFO sides
attach to user logic in hardware, the PC does not share control of the FIFO with the design.
Instead, the FIFO behavior is similar to a System Generator design that includes a
traditional FIFO block.

Single shared FIFO blocks are treated differently than shared FIFO pairs. A single To FIFO
or From FIFO block is replaced by an asynchronous FIFO core when it is compiled for
hardware co-simulation. One side of the FIFO (i.e., the unused shared FIFO half in System
Generator) is connected to PC interface logic. The other side is connected to user design
logic that attached to the original To or From FIFO block. In this manner, control over the
FIFO is distributed between the PC and FPGA design.

When a To FIFO block is compiled for hardware co-simulation, the write side of the FIFO
is connected to the same logic that attached to To FIFO block in user design. The read side
of the FIFO is connected to memory map interface logic that allows the PC to read data
from the FIFO during simulation. The opposite wiring approach is used when a From FIFO
block is compiled for hardware co-simulation. In this case, the write side of the FIFO is
connected to PC interface logic, while the read side is connected to the user design logic.
The host PC writes data into the FIFO and the design logic can read data from the FIFO.

Shared FIFO pairs are typically distributed between software and FPGA hardware. In
other words, one half of the pair is implemented in the FPGA while the other half is
simulated in software using a To or From FIFO block. Together, the software and hardware
portions form a fully functional asynchronous FIFO. When a software/
hardware shared FIFO pair is co-simulated, System Generator transparently manages the
necessary transactions between the PC and FPGA hardware.

When data is written to a software To FIFO block during simulation, the same data is
written to the FIFO in hardware. The design in hardware can then retrieve this data by
reading from the FIFO. Similarly, when data is written into the hardware FIFO by design
logic, the data can be read by the From FIFO software block. Note that the empty, full, read
and write count ports on the shared FIFO blocks pessimistically reflect the state of the
hardware FIFO counterpart. A software shared FIFO can connect to a hardware shared
FIFO simply by specifying the name of the shared FIFO as it was compiled for hardware
co-simulation.

Pad
FPGA platforms often include a variety of on-board devices (e.g., external memory, analog
to digital converters, etc.) that the FPGA can communicate with. For a variety of reasons, it
may be useful to form connections to these components in your System Generator models
and to use these components during hardware co-simulation. For example, if your board
includes external memory, the user can define the control and interface logic to this
memory in the user’s System Generator design and use the physical memory during
hardware co-simulation.

http://www.xilinx.com

Video Starter Kit www.xilinx.com 49
UG217 (v1.5) October 26, 2006

Co-Simulation Communication Primitives
R

The user can interface to these types of components by including board-specific I/O pads
in the user’s System Generator models. A board-specific I/O pad is a special port that is
wired to a specific FPGA pad when the model is compiled for hardware co-simulation.
This type of port differs from standard co-simulation ports that are controlled by a
corresponding port on a hardware co-simulation block. This means that a hardware co-
simulation run-time block does not include board-specific ports on its external interface.

A board-specific I/O pad is implemented using special non-memory mapped gateway blocks
that tell System Generator to wire the signals to the appropriate FPGA pins when the
model is compiled into hardware. To connect a System Generator signal to a board-specific
port, the user should connect the appropriate wire to the special gateway (in the same way
as is done for a traditional gateway).

The user can define non-memory mapped ports for a design using the System Generator
Board Descriptor Builder application. There are two ways to invoke this application:

1. By typing xlSBDBuilder at the MATLAB command window.

2. By selecting Hardware Co-Simulation->New Compilation Target…
under the Compilation submenu on the System Generator parameters dialog box.

Shared Memory Read/Write Blocks
System Generator supports burst transfers to and from the FPGA during co-simulation
using the Shared Memory Read and Write blocks (Figure 4-5). These blocks provide high-
speed interfaces for lockable shared memories and shared FIFO blocks that have been
compiled for co-simulation. These blocks rely on the burst-transfer support of the co-
simulation platform to read or write the contents of an entire vector or matrix signal in a
single-hardware transaction. Both blocks are described below.

The Shared Memory Read block provides a high-speed interface for reading data from a
shared memory or FIFO in hardware. The requested data is read out of the shared memory
and into a Simulink scalar, vector, or matrix signal which is written to the block’s output
port.

The Shared Memory Write block provides a high-speed interface for writing data into a
shared memory or FIFO in hardware. The Shared Memory Write block input port should
be driven by the Simulink scalar, vector, or matrix signal containing the data you would
like written into the shared memory object. Note that the width of the input data must
match the width of the shared memory, and the total number of elements in the input must
not be bigger than the depth of the shared memory or FIFO.

The bracketed text beneath each block indicates the shared memory or FIFO with which
the block interfaces. The depth and width displays on the block indicate the size of the
shared memory. These values are updated at runtime when the block makes the
connection to the shared memory object.

Figure 4-5: Shared Memory Read and Write Blocks

http://www.xilinx.com

50 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

Co-Simulation Interfaces
System Generator provides multiple co-simulation interfaces that support a broad range of
FPGA hardware platforms. There are certain platforms, such as the XtremeDSP
Development Kit, that employ specialized co-simulation interfaces to take advantage of
the high-speed connection between the FPGA platform and the host PC. For example, the
XtremeDSP Development Kit provides a PCI interface that enables high-speed
communication with a host PC. Ethernet-based co-simulation supports hardware co-
simulation with FPGA platforms that provide network connections. System Generator also
provides a general purpose JTAG hardware co-simulation interface that uses the JTAG port
to communicate with the FPGA. These interfaces are discussed in detail below.

JTAG
The JTAG hardware co-simulation interface takes advantage of the ubiquity of JTAG to
extend System Generator's hardware in the simulation loop capability to numerous other
FPGA platforms. A platform can support the JTAG hardware co-simulation interface,
provided it includes the following hardware components:

• A Xilinx FPGA part that is available in System Generator as a supported device (i.e.,
can be chosen in the Part field of the System Generator block dialog box)

• An on-board oscillator that supplies the FPGA with a free-running clock source

• A JTAG header that provides access to the FPGA.

If the user has a board that supports JTAG hardware co-simulation, there are additional
hardware installation requirements:

• The power supply and all other required cables must be attached correctly to your
development board.

• A Parallel Cable IV or Platform Cable USB programming must be connected to your
machine’s ECP printer port (LPT1 only) or USB port.

• The Parallel Cable IV or Platform Cable USB header must be connected to the JTAG
port on your FPGA development board using either the flying leads or ribbon cable
connectors.

PCI
Certain co-simulation platforms (e.g., the XtremeDSP Development Kit) provide a PCI
interface that allows the FPGA hardware to communicate with the PC. These boards plug
directly into an available PCI slot on the PC. For these platforms, System Generator
supports PCI-based hardware co-simulation. Note that PCI is a specialized interface which
includes hardware and software components that are tailored to the specific requirements
of a particular platform.

Network-Based Ethernet Co-Simulation
The network-based Ethernet hardware co-simulation interface provides co-simulation
access to an FPGA platform over an IPv4 network infrastructure. Because IPv4 networks
are widespread, the interface provides a straightforward way to communicate with remote
hardware connected to either a wired or wireless network. This interface is ideal in
situations where the FPGA platform is remote (e.g., across the office or across the country)
or when multiple designers must shared a single development board.

http://www.xilinx.com

Video Starter Kit www.xilinx.com 51
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

The network-based Ethernet interface supports operations in 10/100 Mb/s half/full
duplex modes. For FPGA device configuration, the interface supports Ethernet-based
configuration over the same network connection for co-simulation. This means that a
separate programming cable (e.g., Parallel Cable IV) is not required.

Point to Point Ethernet Co-Simulation
Point-to-point Ethernet Hardware Co-Simulation provides a co-simulation interface using
a raw Ethernet connection. The raw Ethernet connection refers to a Layer 2 (a.k.a. Data-
Link Layer) Ethernet connection, between a supported FPGA development board and a
host PC, with no routing network equipment along the path. By taking the advantage of
the ubiquity and advancement of Ethernet technologies, the interface facilitates a
convenient and high-bandwidth co-simulation to an external FPGA device.

The point-to-point Ethernet interface supports operations in 10/100/1000 Mb/s half/full
duplex modes. Jumbo Frames are also supported on a Gigabit Ethernet connection,
provided it is enabled by the underlying connection. For FPGA device configuration, the
interface supports either JTAG-based configuration over a Parallel IV or a Platform USB
cable, or Ethernet-based configuration over the same point-to-point Ethernet connection
for co-simulation.

Third Party Co-Simulation
The System Generator software includes hardware co-simulation support for the
XtremeDSP Development Kit, ML402 development board, and MicroBlaze Multimedia
Demonstration board. The user can add support for new or third-party FPGA
development boards by installing additional System Generator plugins. These plugins are
distributed as ZIP files that configure System Generator to support the user’s board.

System Generator provides an installer to install user development board plugins. A
System Generator plugin can be installed by following the steps provided below:

1. Download the plugin to a temporary directory.

2. From the MATLAB command window, change directories to the temporary directory
where the plugin is saved.

3. From the MATLAB command window, type

>> xlInstallPlugin(‘myplugin.zip’)

Note: myplugin.zip is the name of the plugin file the user is installing.

This installs the plugin. A status bar is displayed in Figure 4-6 to show the progress of
the installer.

Figure 4-6: Status Bar

http://www.xilinx.com

52 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

4. After the plugin is installed, the user can choose the development board as a
compilation target in the System Generator block dialog box.

Building a Co-Sim Project
The starting point for hardware co-simulation is the System Generator model or subsystem
the user would like to run in hardware. A model can be co-simulated, provided it meets the
requirements of the underlying hardware platform. This model must include a System
Generator block; this block defines how the model should be compiled into hardware. The
first step, after the user has a model that is ready to run in hardware, is to open the System
Generator block dialog box and select a compilation type under Compilation.

Choosing a Compilation Target

The user can choose the hardware co-simulation platform for System Generator to compile
code by selecting an appropriate compilation type in the System Generator block dialog
box. Hardware co-simulation targets are organized under the Hardware Co-Simulation
submenu in the Compilation dialog box field (Figure 4-7). When the user installs System
Generator, several hardware co-simulation compilation targets are automatically installed.

When a compilation target is selected, the fields on the System Generator block dialog box
are automatically configured with settings appropriate for the selected compilation target.
System Generator remembers the dialog box settings for each compilation target. These
settings are saved when a new target is selected, and restored when the target is recalled.

Invoking the Code Generator

After the user has selected a compilation target, the user can invoke the System Generator
code generator to compile the model for hardware co-simulation. The code generator is
invoked by pressing the Generate button in the System Generator block dialog box
(Figure 4-8).

Figure 4-7: Hardware Co-Simulation Targets

Figure 4-8: Code Generator Generate Button

http://www.xilinx.com

Video Starter Kit www.xilinx.com 53
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

The code generator produces an FPGA configuration bitstream for the user’s design that is
suitable for hardware co-simulation. System Generator not only generates the HDL and
netlist files for the user’s model during the compilation process, but it also runs the
downstream tools necessary to produce an FPGA configuration file.

Note: A status dialog box appears after the user presses the Generate button. During compilation,
the status box (Figure 4-9) provides a Cancel and Show Details button. Pressing the Cancel button
stops compilation. Pressing the Show Details button exposes details about each phase of
compilation (or tool) as it is run. It is possible to hide the compilation details by pressing the Hide
Details button on the status dialog box.

The configuration bitstream contains the hardware associated with the user’s model, and
also contains additional interfacing logic that allows System Generator to communicate
with the user’s design via a physical interface between the platform and the PC. This logic
includes a memory map interface over which System Generator can read and write values
to the input and output ports on your design. It also includes any platform-specific
circuitry (e.g., DCMs, external component wiring) that is required for the target FPGA
platform to function correctly.

Figure 4-7

Figure 4-9: Compilation Status

http://www.xilinx.com

54 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

Hardware Co-Simulation Blocks

System Generator automatically creates a new hardware co-simulation block after it has
finished compiling the design into an FPGA bitstream. A Simulink library is also created to
store the hardware co-simulation block. At this point, the user can copy the block out of the
library and use it in the System Generator design as the user would for other Simulink and
System Generator blocks.

The hardware co-simulation block assumes the external interface of the model or
subsystem from which it is derived. The port names on the hardware co-simulation block
match the ports names on the original subsystem. The port types and rates also match the
original design (Figure 4-10).

Hardware co-simulation blocks are used in a Simulink design the same way other blocks
are used. During simulation, a hardware co-simulation block interacts with the underlying
FPGA platform, automating tasks such as device configuration, data transfers, and
clocking. A hardware co-simulation block consumes and produces the same types of
signals that other System Generator blocks use. When a value is written to one of the
block’s input ports, the block sends the corresponding data to the appropriate location in

Figure 4-8

Figure 4-10: Example of a Run-time Hardware Co-Simulation Block
Inserted in the Original Model

http://www.xilinx.com

Video Starter Kit www.xilinx.com 55
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

hardware. Similarly, the block retrieves data from hardware when there is an event on an
output port.

Hardware co-simulation blocks can be driven by Xilinx fixed-point signal types, Simulink
fixed-point signal types, or Simulink doubles. Output ports assume a signal type that is
appropriate for the block they drive. If an output port connects to a System Generator
block, the output port produces a Xilinx fixed-point signal. Alternatively, the port
produces a Simulink data type when the port drives a Simulink block.

Note: When Simulink data types are used as the block signal type, quantization of the input data is
handled by rounding, and overflow is handled by saturation.

Like other System Generator blocks, hardware co-simulation blocks provide parameter
dialog boxes that allow them to be configured with different settings. The parameters that
a hardware co-simulation block provides depend on the FPGA platform the block is
implemented for (i.e., different FPGA platforms provide their own customized hardware
co-simulation blocks).

Ethernet Co-Sim Setup
The procedure for setting up the Xilinx ML402 development board to support System
ACE-based configuration with hardware co-simulation is described below. Two
configuration modes are supported for point-to-point Ethernet co-simulation:

• System ACE configuration

• Standard JTAG configuration using a Parallel Cable IV or Platform Cable USB.

Note: If using JTAG configuration, the user can skip the section below as it deals with setup and
configuration of the System ACE card.

Figure 4-11: Port Interface of a Run-time Co-Simulation Block Matches the
Port Interface of the Original Design

http://www.xilinx.com

56 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

A diagram of the ML402 and controls required for setup and validation is provided in
Figure 4-12.

System ACE Setup
System Generator utilizes the System ACE solution to support device configuration over
an Ethernet-connection for both network and point-to-point Ethernet hardware co-
simulation interfaces. Using this interface eliminates the need for a second programming
cable (e.g., a Xilinx Parallel Cable IV) for device configuration.

For point-to-point Ethernet co-simulation, the System ACE configuration is available as
the Point-to-point Ethernet option under the Configuration tab on the block
parameters dialog box. For network-based Ethernet co-simulation, the System ACE
configuration solution is the only configuration option.

Prepare the System ACE Compact Flash Card

1. Insert the Compact Flash (CF) card into a Compact Flash reader/writer.

2. Extract the default CF image in $SYSGEN\ml402\sysace_cf.zip, which is
bundled with System Generator, onto the card.

Note: The card might need to be formatted to a FAT16 file system before the CF image can be
correctly extracted onto card. Use the mkdosfs utility to format the card. The mkdosfs program
can be obtained from http://www.xilinx.com/products/boards/ml310/current/utilities/mkdosfs.zip.

Figure 4-12: ML402 Board Diagram

http://www.xilinx.com
http://www.xilinx.com/products/boards/ml310/current/utilities/mkdosfs.zip

Video Starter Kit www.xilinx.com 57
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

The following example command formats the card as FAT16 file system:

mkdosfs -v -F 16 e:

where e: is the drive name associated with the Compact Flash reader.

Warning: Ensure the drive name (e.g., ‘e:’) is specified correctly prior to running the
program.

Assign an Ethernet MAC Address and IPv4 Address

3. After writing the CF image to the card, the user will find two files, mac.dat and
ip.dat, in the CF card’s root directory. The mac.dat and ip.dat files specify the
Ethernet MAC address and IPv4 address associated with the board, respectively. These
addresses are used to uniquely identify a target board during Ethernet hardware co-
simulation.

Note: Steps 2 and 3 are optional and are necessary only when:

♦ The default MAC and IP addresses conflict with the user’s default network settings.

♦ The user wishes to co-simulate two or more ML402 boards concurrently.

4. Open mac.dat in a text editor to change the Ethernet MAC address. The MAC
address must be specified as a six pair of two-digit hexadecimal separated by colons
(e.g. 00:0a:35:11:22:33). All-zeros, broadcast, or multicast MAC addresses are
not supported.

5. Open ip.dat in a text editor to change the IP address. The IP address must be
specified in IPv4 dotted decimal notation (e.g. 192.168.8.1). All-zeros, broadcast,
multicast, or loop-back IP address are not supported.

Adjust On-Board Settings for System ACE

1. Turn off the ML402 board.

2. Install the Compact Flash card (as prepared in the previous steps) securely into the
corresponding slot on the development board.

3. Adjust the on-board settings as follows:

a. Configuration Address jumpers:

[1: on, 2: off, 3: off, 4: on, 5: off, 6: on](Address 4 with JTAG mode)

b. Configuration Source Selector Switch set to SYS ACE (System ACE method).

Figure 4-13: On-Board Settings

http://www.xilinx.com

58 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

System ACE Troubleshooting

Verify System ACE Settings

1. Power on the ML402 board. Check the on-board status LEDs to ensure the FPGA is
configured with the initial bootloader image from the Compact Flash card. If the
configuration succeeded, the DONE LED should on and all error LEDs should be off.
Otherwise, reexamine the steps in the System ACE setup procedure.

2. Check the information displayed on the 16-character x 2-line LCD screen of the board
(Figure 4-14). If no error occurred, the Ethernet MAC address (without colons) should
appear on the first line of the LCD and the IPv4 address should appear on the second
line.

3. If the LCD does not display the information correctly, press the System ACE Reset
button to reset the System ACE controller and reconfigure the FPGA. Check the status
LEDs again to ensure device configuration completed successfully.

Verify Ethernet Interface And Connection Status

1. Connect the Ethernet interface of the board to a network connection, or directly to a
host.

2. Check the on-board Ethernet status LEDs (Figure 4-15) to make sure the Ethernet
interface is attached to an active Ethernet segment. The LEDs should reflect the link
speed and the duplex mode at which the interface is operating. If no LED is on, press
the CPU Reset button to reset the FPGA, and also examine whether the Ethernet
segment is active.

3. To ensure the board is reachable by the host, issue ICMP ping from the host to check
the connectivity. For example, type ping 192.168.8.1 on a console to test the
connectivity to a board with IP address 192.168.8.1.

Figure 4-14: Board LCD Screen

Figure 4-15: Ethernet Status LEDs

http://www.xilinx.com

Video Starter Kit www.xilinx.com 59
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

Ensuring a Correct Setup
After following the System ACE setup directions, the user can test to see that the hardware
and software are installed and configured appropriately. This section provides a step-by-
step hardware co-simulation walkthrough to verify a proper setup. In the process, the user
can also learn how to configure the point-to-point Ethernet hardware co-simulation block
dialog box with settings that are appropriate for your machine.

A design has already been prepared that contains a run-time block for point-to-point
Ethernet hardware co-simulation. The example includes a reloadable 5x5 reloadable filter
operator and demonstrates how hardware co-simulation can be used for high-throughput
signal processing applications. In-depth information on this design can be found in the
tutorial entitled Real-time Signal Processing using Hardware Co-Simulation.

1. From the MATLAB console, change directory to:
/Examples/SysgenTutorial/eth_cosim_validation_ex/

2. Open the conv5x5_video_testbench.mdl model from the MATLAB console.

3. In the model, move into the FPGA Processing subsystem.

This design includes a point-to-point Ethernet run-time co-simulation block that has
already been compiled for the user. Before co-simulating the design, the user must first
configure the block’s parameters dialog box with settings appropriate for your PC.

4. Double-click on the conv5x5_video_ex_w_fifos block to open the point-to-point
Ethernet co-simulation parameters dialog box.

This design relies on a free-running clock source to process video frames in real-time.

5. Select Free running clock source mode under the Basic tab.

Figure 4-16: FPGA Processing Subsystem

http://www.xilinx.com

60 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

6. If there is a Video I/O daughter card attached to the ML402 board, check the Has
Video I/O Daughter Card (VIODC) on the ML402 board checkbox on the
Advanced tab.

Choose the Configuration Method

7. Select the Configuration tab.

8. Choose the download cable for configuring the target board.

9. For JTAG-based download cables (Parallel IV or Platform USB), change the cable
speed if the default value is not suitable for the cable in use.

Note: Change the configuration timeout value only when necessary. The default value
should suffice in most cases. A larger value is needed when it takes a considerable amount of time to
re-establish a network connection with the FPGA platform after device configuration completes.

Figure 4-17: Select Free Running Clock Source Mode

Figure 4-18: Check the Has Video I/O Daughter Card (VIODC)

http://www.xilinx.com

Video Starter Kit www.xilinx.com 61
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

Configure the Ethernet Interface Settings

10. Select the Ethernet tab.

From the host interface panel, navigate the pull down list and select the
appropriate network interface card that you are using for hardware co-simulation.

Note: The pull down list only shows those Ethernet-compatible network interfaces installed on
the host, which support 10/100/1000 Mb/s and are currently enabled and attached to an active
Ethernet segment. If the target interface is not listed as expected, examine the connection and
click the Refresh button to update the list.

Figure 4-19: Choose the Configuration Method

Figure 4-20: Configure the Ethernet Interface Settings

http://www.xilinx.com

62 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

11. The information box beneath the pull down list provides the details about the selected
interface. Examine the information to ensure the appropriate interface is chosen, and
adjust the network settings in the operating system when necessary.

12. Depending on which configuration method is chosen, the MAC address in the FPGA
interface panel might need to be changed (Figure 4-22).

a. For JTAG-based configuration over a Parallel IV or a Platform USB cable:

The MAC address need not be changed unless default value conflicts with other
network equipment on the same Ethernet segment, or when the co-simulation is
running over multiple boards. In either case, an arbitrary but non-conflicting MAC
address can be assigned to each point-to-point Ethernet co-simulation block.

b. For point-to-point Ethernet-based configuration:

Observe the MAC address displayed on the LCD screen of the target board when
the configuration boot-loader is running. Change the FPGA MAC address in the
co-simulation block if the default value does not match the target board. Refer to
the System ACE Setup section for details about assigning the MAC address on a
ML402 board.

Figure 4-21: Ensure the Appropriate Interface is Chosen

Figure 4-22: Ethernet Parameters Displayed on ML402 LCD Display

http://www.xilinx.com

Video Starter Kit www.xilinx.com 63
UG217 (v1.5) October 26, 2006

Co-Simulation Interfaces
R

Note: The MAC address must be specified using six pairs of two-digit hexadecimal number
separated by colons (e.g., 00:0a:35:11:22:33).

13. Close the parameters dialog box.

Co-Simulating the Design

After setting the block parameters appropriately, the user can begin co-simulation, which
is started by pressing the Simulink Play button. System Generator automates the device
configuration process and transfers the design under test (DUT) into FPGA device for co-
simulation. A dialog box is shown in to describe the status of the process (Figure 4-23).

1. The final configuration file is first generated based on the input bitstream specified in
the block parameters.

2. The final configuration file is then transferred to the target board using the selected
download cable, and finally used to configure the FPGA device. The progress of
configuration is shown in the dialog box when the configuration is performed over a
point-to-point Ethernet connection.

3. Upon the completion of device configuration, the co-simulation engine re-establishes
the connection to the target board, and starts co-simulating the design.

Figure 4-23: Status Dialog Box

Figure 4-24: Status Showing Reconnection

http://www.xilinx.com

64 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 4: Hardware Co-Simulation
R

Two windows appears after configuration completes, showing the original and filtered
video streams. At this point, setup of your board is successful.

Frame Based Co-Simulation Tutorial
System Generator provides high-speed hardware co-simulation interfaces that allow the
full contents of a Simulink vector or matrix signal to be read from or written to FPGA
hardware in a single transaction. By using these interfaces, the user can significantly
reduce the number of PC/hardware transactions during a simulation and further
accelerate simulation speeds beyond what is traditionally possible with hardware co-
simulation. A tutorial is provided that includes a step-by-step MAC FIR filter design to
demonstrate how these interfaces can be used. For more information, refer to the Frame-
based Acceleration using Hardware Co-Simulation tutorial under the Additional Topic and
Tutorials section in the System Generator User Guide.

Figure 4-25: Two Windows Shown after Configuration

http://www.xilinx.com

Video Starter Kit www.xilinx.com 65
UG217 (v1.5) October 26, 2006

R

Chapter 5

VSK Diagnostics and Support Tool Kit

Overview
The VSK diagnostics program serves to tie together the components of the VSK
development toolkit (Figure 5-1) into a program to configure the ML402 and VIODC
boards for video processing applications and to provide simple loopback and video
processing functions. The VSK support toolkit consists of both hardware and software
modules. The VSK support software can be used to manage all the overhead of interfacing
to video streams on the VIODC and to provide simple video stream interface to and from
a user design. Use of the VSK support software is optional. The software contains a set of
basic features that can be used to develop video IP which is usable in custom
environments. See Table 5-1.

Figure 5-1: VSK Support Toolkit to Develop a Video Processor Pcore

Video In

Video Out

VSK
+

Support
Toolkit

User Video
Processor

Pcore

Hardware
+

Software

ug217_ch6_01_120205

Table 5-1: VSK Support Toolkit Components

Component
Name

Current Filename Type Function

VIODC vsk_viodc_xx.mdl System Generator
Multiple Subsystem

Configures the VIODC card and provides
video streams to the ML402.

VIO_IF vio_if.mdl System Generator
Pcore

Interfaces to VIODC and provides video
streams to other pcores.

VIO driver vsk_vio.c C code Configures VIODC and ML402 boards.

DDR_IF vsk_ddr_xx.mdl System Generator
Pcore

Interfaces DDR memory to video streams and
processor.

DDR driver vsk_ddr.c C code Communicates with DDR and configures
video into and out of memory.

http://www.xilinx.com

66 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

VIODC Design
The VIODC design is constructed using the Xilinx System Generator. It contains interfaces
to each of the various video interface ICs and an interface to the ML402 FPGA. The
individual interfaces are simple designs with a control and status registers, pads, and a
FIFO. See Figure 5-2.

The video mux contains a large routing mux to select video from various inputs and route
it to video outputs. It also contains a test pattern generator. In operation, the video mux
runs at 100 MHz synchronous with the VIO interface back to the ML402 FPGA. This will be
increased to 167 MHz in a future version of the VSK support package. Lower rate video is
carried on the 100 MHz mux by using clock enables to identify the valid pixels. For
instance, the VGA requires an approximate 25 MHz clock, and only one of four cycles is
used to carry video. See Figure 5-3.

VOP vsk_vid_opx.mdl System Generator
Pcore

A simple video processor with color space,
gamma correction, and a Bayer filter

VOP driver vsk_vop.c C code Configures the video pipeline

VTOP vsk_top.c C code Top-level diagnostics program

Notes:
1. Be sure to check the Xilinx VSK website for new updates to the VSK diagnostics.

Table 5-1: VSK Support Toolkit Components (Continued)

Component
Name

Current Filename Type Function

Figure 5-2: VIODC – Top-Level Design with Seven Independent Clock Domains

http://www.xilinx.com/products/vsk
http://www.xilinx.com

Video Starter Kit www.xilinx.com 67
UG217 (v1.5) October 26, 2006

VIODC Design
R

Figure 5-3: VIODC Video Routing MUX

http://www.xilinx.com

68 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

The video is packed into a 33-bit word for transport inside the VIODC. It is arranged as
shown in Table 5-2.

IIC Interface
In addition to routing video data, the VIODC includes support for the IIC interface
associated with each of the video interface ICs. While most of the interfaces are grouped
into a common IIC bus called VID_SDA, VID_SCL, several other discrete IIC buses are
used. Table 5-3 shows the IIC devices that are available.

VIODC-ML402 Serial Port

VIODC Serial Port Interface

The VIODC Serial Port (SPort) is used to write and read the registers of the VIODC FPGA
design. Table 5-4, page 70 defines the 32 registers in the VIODC. The SPort consists of four
signals: sport_clk, sport_sync, sport_up, and sport_dn. The ML40x outputs sport_clk,
sport_sync and sport_up and inputs sport_dn.

The sport_clk is a clock that is provided by the ML40x. The clock is derived by dividing the
ML40x system clock (~100 MHz) by 8 resulting in a sport_clk of ~12.5 MHz. The VIODC
derives its system clock from the LVDS up_clk that should be driven by the ML40x FPGA.
The up_clk should be driven by the ML40x system clock (~100 MHz).

Table 5-2: VIODC Video Format

Bits 32 31 30 29:20 19:10 9:0

Function pixel_valid vsync_n hsync_n Red/Pr Green/Y Blue/Pb

Table 5-3: Available IIC Devices

Device Name VIODC IC IC Pin Name IIC Bus Name
Device IIC
Address

iic_clockgen ICS1523 scl,sda VID_SDA, VID_SCL 0x4c

iic_hd_out ADV7321 scl,sda VID_SDA, VID_SCL 0x54

iic_hd_in_ctl ADV7403 scl,sda VID_SDA, VID_SCL 0x40

iic_hd_in_vbi ADV7403 scl2,sda2 ADV7403_SDA2 0x20

iic_dvi_out TP410 dsel_sda, bsel_scl VID_SDA, VID_SCL 0x70

iic_dvi_out_ddc DVI OUT
Connector

ddc_data, ddc_scl DVI_OUT_DDC_SDA,
DVI_OUT_DDC_SDA,

0xXX

iic_dvi_in_ddc AD9887A ddc_sda,scl AD9887_SDA AD9887_SCL 0xA0

iic_dvi_in_vga EDID PROM sda,scl VGA_IN_SDA,
VGA_IN_SCL

0xXX

iic_dvi_in AD9887A sda.scl VID_SDA, VID_SCL SCL 0x9A

iic_camera MT9V022 camera_conn_sda,
camera_conn_scl

CAMERA_SDA,
CAMERA_SCL

0x98

http://www.xilinx.com

Video Starter Kit www.xilinx.com 69
UG217 (v1.5) October 26, 2006

VIODC Design
R

The sport_sync denotes the beginning of a data write/read transfer. Sport_sync is High the
first clock cycle of the transfer and then stays Low. A complete write cycle takes 32 clock
cycles, 16 cycles of address and 16 cycles of data. The next 32 cycles are used to read the
value of the same address that was used in the write cycle.

A new write/read cycle can be started every 32 cycles. For example:

Write cycle (sport_up): <00 xx> <01 xx> <02 xx> <03 xx> <04 xx> <05 xx> …

Read cycle (sport_dn): <xx xx> <00 xx> <01 xx> <02 xx> <03 xx> <04 xx> …

Sport_up is the serial write signal. The format for a write cycle is 16-bits of address
followed by 16-bits of data.

Note: The address must be shifted by 1 bit to the left. The data is not shifted.

In Figure 5-4, sport_up shows a write cycle using address 0x5 and data 0xCCC5. Notice that
the address is actually 0xA.

In Figure 5-4, waveform sport_up writes addr 0x0005, data 0xCCC5, addr 0x0006 data 5556
(actual: 0x000A,0xCCC5,0x000C,0x5556). Sport_dn reads addr 0x0004, data 0x5554, addr
0x0005, 0xCCC5 (actual 0x0008,0xAAA4,0x000A,0xCCC5) delay one extra clock cycle.

Sport_dn is the serial read signal. The format of the read cycles is 16-bits address followed
by 16-bits data.

Note: The sport_dn read begins 33 clock cycles after the corresponding sport_sync signal. The
address is shifted by one bit to the left. In Figure 5-4, sport_dn shows a read cycle.

Note: A problem with the read cycle causes it to return the previous value instead of the newly
written value. To read the correct value, two reads are required. Since a read cycle only follows a write
cycle, the value must be written into the register twice in order to successfully read the value back.

The SPort interface implemented for the VSK Diagnostics demonstration used two 16-bit
dual-port memories with depths of 32 entries. One memory was used as a write memory
and the second was used as a read memory. New register values were written into the
address location of the write memory that corresponded to the address of the VIODC
register to be written. A counter was used to continually cycle through the 32 entries so
that the contents of the write memory was continually updated to the VIODC. The read
memory was continually updated by reads from the VIODC registers.

Figure 5-4: SPort Waveform

http://www.xilinx.com

70 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

VIODC Registers

Table 5-4: VIODC Registers

Register Name Address Bit Fields

VERSION_ID 0x0

VIO_CTRL 0x1 [3]=cam_shift,
[2:0]=vio_dn
0=up
1=hd_in
2=dvi_in
3=camera,
4=sdi
5=tp

CLOCK_CTRL 0x2 [15]=invcamclk
[10:8]=dviout,
[6:4]=hdout2,
[2:0]=hdout1,
0=vio_up,
1=hd_in,
2=dvi_in
3=camera,
4=pll
5=clkdiv4

IIC_CTRL 0x3 201 = select camera,
100=dvi_in
80=vid
40=dvi_out_ddc
20=dvi_out
10=hd_in_dat
8= hd_in_ctl
4= hdout

PLL_CTRL 0x4 [15:12] = ics664_sel
[11:8] = pll502_sel
[7:5] = clk_mux_select
4 = gunlock_clk
3 = lvds_clkdiv
2 = lvds_clk
1 = sstl3_clkdiv
0 = sstl3_clk
[4] = dac_cs_n
[3] = dac_ldac_n
[2] = dac_clr_n
[1] = dac_sclk
[0] = dac_din

VIO_UP_CTRL 0x5 [15:0]=vio_up_stat

VIO_DN_CTRL 0x6 [15:0]=vio_dn_stat

http://www.xilinx.com

Video Starter Kit www.xilinx.com 71
UG217 (v1.5) October 26, 2006

VIODC Design
R

HD_IN_CTRL 0x7 [1]=~fifo_rst,
[0]=~reset

HD_OUT_CTRL 0x8 [7](1=invert H_sync, 0=default)
[6](1=invert V_sync, 0=defalut)
[5](0=HD mode, 1=SD mode)
[4]=~fifo_rst,
[3](0= sd hsync,vsync=1),
[2](1=sd hsync,vsync 3-state),
[1](0=dup green),
[0]=reset(1=not reset)

DVI_IN_CTRL 0x9 [5]=~fifo_rst,
[4]=coast
[3]=clk_inv
[2]=xclamp
[1]=clk_ext,
[0]=sel_b

DVI_OUT_CTRL 0xA [3]=~fifo_rst,
[2](1=vga_out)
[1](1=vga_pd_n)
[0](1=dvi_out_pd_n),

CAM_CTRL 0xB [7]=hw/sw phase alignment
(0=software, 1=hardware)
(default = 0)
[6]=~fifo_rst,
[5:4]=sync inv,
[3:0]=phase

MUX_CTRL 0xC [14:12]=pat
[10:8]=dvi
[6:4]=hd
[2:0]updn
0=updn,
1=hdin,
2=dviin,
3=cam,
4=sdi,
5=test;

PATTERN_CTRL 0xD [1:0]=test_pattern

0xE Reserved

0xF Reserved

VIODC_VERSION 0x10 [15:0]= viodc fpga version

VIO_STAT 0x11 0xEBDB

CLOCK_STAT 0x12 [15:0]=clock_ctrl

Table 5-4: VIODC Registers (Continued)

Register Name Address Bit Fields

http://www.xilinx.com

72 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

I2C_STAT 0x13 [3]=sda_dn,
[2]=scl_dn,
[1]=sda_up,
[0]=scl_up

PLL_STAT 0x14 [1]=lock,
[0]=func

VIO_UP_STAT 0x15 [15:0]=vio_up_ctrl

VIO_DN_STAT 0x16 [15:0]=vio_dn_ctrl

HD_IN_STAT 0x17 [1]=field,
[0]=genlock

HD_OUT_STAT 0x18 [2]=s_vsync,
[1]=s_hsync,
[0]=s_blank

DVI_IN_STAT 0x19 [3]=in_de,
[2]=ctl,
[1]=scdt,
[0]=sogout

DVI_OUT_STAT 0x1A [0]=msen

CAM_STAT 0x1B [11:0]=LVDS camera output

0x1C Reserved

RESET 0x1D [0] = ML402 Reset

DIP_SWITCH 0x1E [7:0]=dip_switch

BOARD_VERSION 0x1F [3:0]=VIODC board version

Table 5-4: VIODC Registers (Continued)

Register Name Address Bit Fields

http://www.xilinx.com

Video Starter Kit www.xilinx.com 73
UG217 (v1.5) October 26, 2006

VIO Design
R

Clock Routing
The VIODC contains a mux to select clock from video sources and route it to video outputs
destinations.

VIO Design
The VIO design is the counter part of the VIODC design described in the previous section.
The VIO communicates with the VIODC over the VIOBUS. It supports the SPort serial bus
which writes/reads the VIODC registers, the IIC interface which programs the VIODC
peripheral chips, and the upstream and downstream data transfers. It also contains a small
test pattern generator and a video mux to route video between various destinations. The
VIO can be exported as a Pcore which plugs into an EDK project, or it can be used as part
of a larger System Generator design that is exported directly to a bitstream that can be used
to program an FPGA.

Figure 5-5: VIODC Clock Routing MUX

http://www.xilinx.com

74 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

Figure 5-7 shows the top-level view of the VIO Pcore. The vio if block has a mask associated
with it that can be viewed in Figure 5-7. To access the mask, double click on the vio if block.
The user can access the vio design under the vio if block by right-clicking on the block and
selecting Look Under Mask. Figure 5-8 shows the Look Under Mask view of the vio if block.

Figure 5-6: VIO Pcore Top-Level Diagram

http://www.xilinx.com

Video Starter Kit www.xilinx.com 75
UG217 (v1.5) October 26, 2006

VIO Design
R

Figure 5-7: VIO Parameter Mask

http://www.xilinx.com

76 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

VIO Mask
The mask for the vio if block is used to select the compilation mode of the block and to
select the input and output initializations. The mask can be accessed by double clicking on
the vio if block.

Compile Type

The Compile Type field of the VIO mask is used to specify whether the block is being
targeted towards a Pcore design that will be exported to EDK or towards a bitstream
design that will be generated strictly from within System Generator. It is the user’s
responsibility to verify that the correct mode is selected before running “generate” from
the System Generator block in their design. Errors can result if the incorrect compile mode
is selected. When using the VIO block in a Pcore design, the user needs to regenerate the
memory map of the EDK Processor block if the compile mode is ever modified.

When using the VIO block in EDK mode, the design is modified to use shared memories for
the registers and memories in the design. This allows the creation of a memory map that a
processor can use to access the various registers and memories.

When the VIO is compiled as an EDK Pcore, it can then be imported into an EDK project.
From there, the registers and memories in the VIO can be accessed by the MicroBlaze
processor in the EDK project. The accesses are made by using function calls that are auto-
generated during the Pcore generation in System Generator.

Figure 5-8: Look Under Mask View of the vio if Block

http://www.xilinx.com

Video Starter Kit www.xilinx.com 77
UG217 (v1.5) October 26, 2006

VIO Design
R

Bitstream mode modifies the design to use local memories. Local memories are used because
a processor is not used in this type of design. As a result, the memory map interface is not
needed.

Input Type

The Input Type field of the VIO mask is used to specify the input that will be initialized at
start up. The user can select from a Test Pattern (4:4:4 RGB mode), the LVDS Camera (4:4:4
Bayer format), the Component input set to 525P format (4:4:4 RGB), the Composite input
(4:4:4 YCrCb), and the S-Video input (4:4:4 YCrCb).

A User Defined option allows the user to select if they plan to make changes directly to the
initialization fields of the various registers and memories. The User Defined option keeps
the mask from overwriting the edits the user has made.

Note: When using the User Defined option, both the Input Type and the Output Type must be set to
User Defined.

Output Type

The Output Type field of the VIO mask is used to specify the output that will be initialized
at start up. The user can select from VGA output (4:4:4 RGB mode), DVI output (4:4:4
RGB), Component output set to 525P (Progressive Scan or High Definitions formats) (4:4:4
YCrCb), Composite output (4:4:4 YCrCb), and the S-Video input (4:4:4 YCrCb).

A User Defined option allows the user to select if they plan to make changes directly to the
initialization fields of the various registers and memories. The User Defined option keeps
the mask from overwriting the edits the user has made.

Note: When using the User Defined option, both the Input Type and the Output Type must be set to
User Defined.

Mask Modifications

The script for the VIO mask is unlocked so that the user has the option to modify the
input/output settings or add new input/output options to meet their needs. It is highly
recommended that the user only modify the variable initializations at the top of the script.
The script can by found by right clicking on the vio if block and selecting Edit Mask. In the
Mask editor window, select the Initialization tab. The Initialization commands window
contains the script for the mask.

EDK Pcore
The VIO block can be used in a design that is targeted at being exported as an EDK pcore.
Figure 5-6 is an example of such a design. This is the recommended way to use the VIO
with EDK.

It is also possible to copy the VIO block in to a larger design that is to be exported as a
pcore. The VIO contains input and output gateways that are expected to be connected to
external pins in the EDK project. The user is responsible for resolving all of those issues.
The VSK Diagnostics EDK design can be use as a reference.

The user is responsible for making sure that the Compile Type of the VIO mask is set to
EDK before the pcore is generated. The user is also responsible for making sure that the
memory map was properly generated in the EDK Processor block.

http://www.xilinx.com

78 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

Bitstream
The VIO block can be used in a design that is targeted for being generated as a bitstream
directly from System Generator. Figure 5-9 is an example of a standalone bitstream design.
In this design, the VIO receives video from the VIODC and provides that data on its vout
port to the VOP block for processing. The output of the VOP block is routed around to the
vin input of the VIO block. The VIO then routes that data up to the VIODC for display.

The user can use the VIO mask to select the input and output types that the design will
initialize at start-up. The user is responsible for making sure that the Compile Type is set to
Bitstream before the design bitstream is generated.

There are input and output gateways in the VIO that must be connected to the proper
FPGA pins. To designate those pin locations, there is a .ucf file that must accompany a
bitstream design that uses the VIO block. An example of this .ucf file can be found on the
VSK CDROM at Examples\VSK_StandAlone. The file is called DesignName_cw.ucf.
This file must be copied into the target directory that the user specifies for building the
bitstream. The file should be renamed to <design_name>_cw.ucf. (e.g.,
vsk_vio_vio_cw.ucf)

There are two ways to accomplish this:

1. Create the directory structure and copy the .ucf file into the target directory before
generating the bitstream.

2. Generate the bitstream, copy the .ucf file into the created target directory, and
regenerate the bitstream. If the .ucf file is not present in the target directory when the
bitstream is created, the bitstream is generated, but the FPGA pins are selected

Figure 5-9: VIO Bitstream Design

http://www.xilinx.com

Video Starter Kit www.xilinx.com 79
UG217 (v1.5) October 26, 2006

VIO Design
R

randomly by the software, instead of being locked to the correct locations as specified
by the .ucf file.

VIO I/O Buses
The vin and vout buses of the vio_if block are defined in Table 5-2. The gpio_in and
gpio_out buses are defined in Table 5-5.

Figure 5-10: VIO Pcore Top-Level Diagram

Table 5-5: VIO_IF GPIO Format

Bits 12:9 8:5 4 3 2 1 0

gpio_out
dip_sw

(8:5)
dip_sw

(4:1)
sw_N sw_E sw_w sw_S sw_C

gpio_in - led(3:0) led_N led_E led_W led_S led_C

http://www.xilinx.com

80 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

VIO Registers

DDR Design
The DDR pcore is used to buffer video streams in memory. In addition, it provides access
to the DRR memory to the MicroBlaze processor. To do this, it uses the DDR controller
included in the VSK examples. Figure 5-11 shows how the DDR read and write ports are
attached to Shared FIFOs which are accessible by the processor.

Table 5-6: VIO Registers

Register Name Bit Fields

VIO_IF_IIC_CTRL [3]=ena_iic_ram,
[2]=sel_iic_ram,
[1]=iic_scl,
[0]=iic_sda

VIO_IF_IIC_STAT [0]=sdai

VIO_IF_LED_CTRL [4:0]=newsc_leds

VIO_IF_PATTERN_CTR [2:0] VGA pattern control

VIO_IF_SPORT_CTRL [4:0]= sport input delay compensation

VIO_IF_SPORT_STAT [4:0]=current word counter

VIO_IF_SWITCH_STAT [15:8]= dip_sw, [4:0]=newsc_button

VIO_IF_VGA_CTRL [2]fifo reset [1:0]=vga_sel(0=test_pattern,
1=vid_out, 2=vid_sync) copied to vga stat

VIO_IF_VGA_STAT [2:0] from to vga ctrl

VIO_IF_VIO_CTR [4:3]vch_src
[2:1]=vga-up_src(0=vio_dn, 1=vch_up,
2=tp
[0]=vio_reset

VIO_IF_VIO_STAT [9:0]=vio_dn[9:0]

http://www.xilinx.com

Video Starter Kit www.xilinx.com 81
UG217 (v1.5) October 26, 2006

VOP Design
R

VOP Design
The VOP design is a simple video processing pipeline. It is available to be modified or
replaced by other video processing system. The vid_in and vid_out streams connect to the
DRR memory, and VIO Pcores. See Figure 5-12.

Figure 5-11: DDR Design

Figure 5-12: RGB Camera Video Processing Pipeline

http://www.xilinx.com

82 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

Running the Diagnostics
The Video Starter Kit can be configured to run a demo and diagnostics program. This
program can be used to verify the operation of the VSK. This program can be used to
enable the VIODC video interfaces in a passthrough mode, and demonstrate FPGA video
processing on live video streams.

To run the demo, the hardware needs to be setup as shown in Figure 5-13 to talk to a PC
over an RS-232 serial port.

The VSK diagnostics also require LVDS camera to be connected to the VSK. Note that the
VSK consists of a VIODC plugin card attached to a ML402 main board. The RS-232 and
power connect to the ML402 main board and the RGB LVDS camera and DVI/VGA output
connect to the VIODC plugin card.

Figure 5-13: VSK Demo Setup

 UART
Host
(#12)

Cat5 Cable

HOST

DVI Display

VGA Display

DVI/
VGA

DVI Cable

+5V

VSK

Component
YPbPr Out

PC
9-Pin
Serial
Port

5V
Power
Supply

LVDS
Camera

DVI
Out

RGB Camera

ug217_ch6_01_020806

RS-232
Null Modem

Cable

http://www.xilinx.com

Video Starter Kit www.xilinx.com 83
UG217 (v1.5) October 26, 2006

Running the Diagnostics
R

Hardware Setup
Refer to Figure 5-14 and Figure 5-15 for the locations of each interface port.

Figure 5-14: ML402 Board - Top View

Figure 5-15: Virtex-4 ML40x Evaluation Platform Components (Back)

http://www.xilinx.com

84 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

1. Insert the System Ace Flash Memory Card into the System ACE connector.

2. Connect the ML402 UART Host port (#12) to a PC with a 9-pin RS-232 serial port cable.

3. Connect the VIODC LVDS Camera port to the Irvine Sensors RGB Camera’s HOST
port using the CAT6 network cable.

4. Connect the VIODC DVI Out port to a DVI, VGA or component (YpbPr) video display.
If connecting to a VGA device, use the DVI to VGA adapter included in the VSK.

5. With the power switch set to OFF, connect the ML402 5V power supply input (#26) to
the output of the 5V power brick.

Software Setup
1. Open a HyperTerminal window in

Windows/Accessories/Communications/HyperTerminal,
(or use any other terminal program such as Tera Term Pro).

2. Configure the HyperTerminal for 115,200 bits per second, 8-bit, no parity, no flow
control.

Configure the ML402 Board to Run the Diagnostics

1. Set the DIP switch CFG ADDR[2:0] to 0 and Mode[2:0] to 0 to as shown in Figure 5-16.

2. Switch the ML402 power switch to ON. The Power Good LED should light on the
VIODC.

3. After power up, or pressing the RST button, select the VSK diagnostics program by
pressing the center button. There are five push switches arranged labeled
GPIO_SW_N, GPIO_SW_S GPIO_SW_E, GPIO_SW_W GPIO_SW_C. You can use the
north-south pair to select a demo program. Alternately, a demo menu will appear on
the ML402 board's VGA output. A PC with an RS-232 serial port can be used to select
the demo.

4. After the ML402 and VIODC FPGAs are configured with the VSK diagnostics
program, a menu should appear on the HyperTerminal screen.

Figure 5-16: Configure the ML402 Board

http://www.xilinx.com
http://www.ayera.com/teraterm

Video Starter Kit www.xilinx.com 85
UG217 (v1.5) October 26, 2006

Running the Diagnostics
R

Running the VSK Diagnostics

After power up, the HyperTerm RS-232 terminal window appears as in Figure 5-17. This
indicates that the ML402 board has booted correctly and is able to communicate with the
PC.

1. Press “?” anytime to display the menu.

2. Then run the VSK diagnostics Self-Test program by pressing t. (No return is
necessary). The self-test program reports any errors. If errors are encountered, check
the cables and retry. If the self-test still reports an error, contact Xilinx Support.

RGB Camera Test

1. To configure the RGB camera to display on the video outputs, press 1.

2. After configuring the RGB camera to display, a color image from the camera should be
visible on the output video screen. If the display is connected to the component video,
the colorspace is incorrect since the camera is RGB, and the component video is YPrPb.
To change colorspace, press the c key, to cycle between several color space options
until the color is corrected.

The VSK also supports VGA, DVI, and component video inputs and outputs. These video
interfaces can be tested as described next. Note that not all resolutions are supported.

Component Video Input Test

To test the component video input:

1. Connect any component video source, such as a component capable DVD player.

2. Select option 2 in the diagnostics menu.

3. Select the appropriate resolution using the r key.

4. The VSK supports 525P, 720P, and 1080I component video.

Figure 5-17: HyperTerm RS-232 Terminal Window

http://www.xilinx.com

86 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

Depending on the output monitor, the user should see a component image on the VGA and
DVI outputs. If using component output, select the output resolution and color space using
the r key.

DVI Input Test

To test the DVI input:

1. Connect a DVI video source, such as a PC or a DVI capable DVD player to the VSK DVI
input connector.

2. Select option 3 in the diagnostics menu.

3. Select the appropriate resolution using the r key.

4. The VSK supports 525P, 720P, and 1080I DVI video. Other standards will be supported
in the future.

Depending on the output monitor, the user should see the DVI image on the VGA and DVI
outputs. If using component output, select the output resolution using the r key.

VGA Input Test

To test the VGA input:

1. Connect a PC output to the VGA input on the VSK VIODC board using a VGA cable.

2. Set the PC screen resolution to 800 x 600.

3. Configure the VSK input to VGA.

4. Select option 4 in the diagnostics menu.

5. Other VGA screen resolutions are not currently supported. Other standards will be
supported in the future.

The user should see the PC screen on the VSK VGA or DVI output. Component video
devices typically will not sync to the VGA signal.

Composite Input Test

To test the Composite input:

1. Connect the Composite input port on the VSK VIODC board to a Composite video
source, such as a DVD player using a Composite cable (RCA cable).

2. Connect the Composite output port of the VSK VIODC board to a Composite display,
such as a TV using a Composite cable (RCA cable).

Note: The S-Video output port of the VSK VIODC can also be used.

3. Select option 5 in the diagnostics menu.

The user should see the video on the Video display. Only the Composite video and
S-Video outputs are presently supported for this option.

S-Video Input Test

To test the S-Video input:

1. Connect the S-Video input port on the VSK VIODC board to an S-Video source, such as
a DVD player using an S-Video cable.

2. Connect the S-Video output port of the VSK VIODC board to an S-Video sink, such as
a TV using an S-Video cable.

http://www.xilinx.com

Video Starter Kit www.xilinx.com 87
UG217 (v1.5) October 26, 2006

Running the Diagnostics
R

Note: The Composite video output port of the VSK VIODC can also be used.

3. Select option 6 in the diagnostics menu.

The user should see the video on the Video display. Only the Composite video and
S-Video outputs are presently supported for this option.

Additional Diagnostics and Controls
The VSK diagnostics package contains additional functionality which can be accessed by
selecting the VIO, DDR, and Video Processor menus. To exit these submenus, press the
escape key.

VIO Diagnostics Peek and Poke Facility

The VIO diagnostics contains a simple keystroke menu which provides access to all the
registers in the ML402 FPGA, the VIODC FPGA, and the ICS Interface on the VIODC
board. The menu uses key pairs to select a device and register address. The selected
register can be read or written with a data value. The data value can be incremented or
decremented to desired value. Although simple, this facility helps to setup device registers
in an interactive mode.

Table 5-11 shows the devices that are available.

Table 5-7: Keystroke Menu

Key Parameter Action Function

- device device-- Decrements the device id

= device device++ Increments the device id

[addr addr-- Decrements the device register address

] addr addr++ Increments the device register address

; data data-- Decrements the data parameter

‘ data data++ Increments the data parameter

, read Data=register[device][addr]

. write Register[device][addr]=data

Table 5-8: Available Devices

Device Device ID

ML402 0

VIODC 1

iic_loopback 2

iic_clockgen 3

iic_hd_out 4

iic_hd_in_ctl 5

iic_hd_in_vbi 6

http://www.xilinx.com

88 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 5: VSK Diagnostics and Support Tool Kit
R

VIO Diagnostics - Device Configure Facility

The peek and poke menu makes it simple to read and write registers, but setting groups of
registers can become tedious. The VIO diagnostics contain a feature to configure groups of
registers into specific modes to support applications level such as configuring the VIODC
to route the LVDS Camera to the VGA output. Use the <q> and <w> key to select an
application mode and <a> to configure the VIODC. The VSK diagnostics are written to
allow these same to be called from other software programs to configure the VIODC and
ML402 into various operational modes.

Troubleshooting

1. Flat panel displays cannot display all video standards, or video which is out of spec.

2. VGA and flat panel displays require RGB data, component video, and S-video require
YCC or YPbPr encoded video. If the incorrect video format is selected, the video will
appear on the display, but with incorrect colors.

3. VGA and flat panel displays require RGB data and component video, and S-video
require YCC or YPbPr encoded video. If the incorrect video format is displayed, the
video appears with incorrect colors.

4. VGA and component require gamma corrected video, where flat panels usually apply
a gamma correction. If the display has too much contrast or is washed out, it is likely
that the gamma correction is incorrect. In addition, the image is shifted with regions
of black.

iic_dvi_out 7

iic_dvi_out_ddc 8

iic_dvi_in_vga 9

iic_dvi_in 10

iic_camera 11

Table 5-8: Available Devices

Device Device ID

http://www.xilinx.com

Video Starter Kit www.xilinx.com 89
UG217 (v1.5) October 26, 2006

R

Chapter 6

VSK Tutorial

Overview
Video processing systems often contain a mix of both hardware and software components.
For instance, a video processing block may contain registers which need to be initialized by
an embedded processor. This tutorial illustrates the process of creating a video processing
core or pcore which is compatible with systems constructed with the Xilinx Embedded
Development Kit (EDK). EDK pcores are reusable peripherals which can be imported into
any EDK project. The Video Starter Kit (VSK) can be used with System Generator to
develop EDK pcores that process live video streams.

Creating a Video Gain and Offset Peripheral
The tutorial creates a simple peripheral to apply basic gain and offset controls to a video
stream. It covers the following:

• Gain and offset theory

• System architecture overview

• Design entry

• Testing the video function in System Generator

• Generating the pcore

• Importing the pcore into an EDK project

• Importing the pcore software drivers

• Controlling the pcore from a demo menu

• Running the tutorial with live video on the VSK

http://www.xilinx.com

90 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
R

Gain and Offset Theory
Figure 6-1 illustrates the video gain and offset processing system that is applied to a video
stream.

The function implements the following equation for three video channels:

Vid_out = (vid_in(channel) + offset(channel)) * gain(channel)

System Architecture
In the tutorial system, the gain and offset is implemented as a new pcore and inserted into
the VSK diagnostic/demo system. See Figure 6-2. Gain and offset for each channel are
controlled by registers that are writeable from a MicroBlaze processor. The video input
stream and output stream are supplied by the vio_if pcore which controls the VIODC
board. The VIODC pixel clock rates are determined by the video source pixel clock, while
the MicroBlaze and video processing pcores run at 100 MHz. The video sources are
buffered in FIFOs and converted to 100 MHz streams with an accompanying pixel enable
signal.

Video Stream Format
The VSK demo system assumes that video streams are packed into 33-bit fields. Packing
the various video signals into a single field simplifies routing the video channel. The model

Figure 6-1: Gain and Offset

+ vid_in vid_out round / /

/

/
10 11 27 10

10 / 16

Offset Register Gain Register

ug217_ch7_01_121205

Figure 6-2: Gain and Offset System Architecture

vio_if

DDR

VOP

vid_gain_offset

VIODC Video
I/O

Pcores

MicroBlazeRS-232

ug217_ch7_02_121205

http://www.xilinx.com

Video Starter Kit www.xilinx.com 91
UG217 (v1.5) October 26, 2006

Tutorial Files
R

includes a test pattern generator that generates a packed video stream and pack and
unpack functions. The packed format for VSK video streams is:

vid[32:0]=
{
 pix_enable,
 vsync_n,
 hsync_n,
 red[9:0],
 green[9:0],
 blue[9:0]
};

Pixel Enable
The video stream format includes a pix_enable signal that indicates the presence of an
active video pixel. The use of the pix_enable signal allows video streams with arbitrary
pixel clocks rates to be processed on a system with a greater but fixed frequency. For
instance, the RGB camera uses a 26.6 MHz pixel clock, but the processing clock is 100 MHz.
This means that roughly one in four clocks carry active pixels. The processing blocks can
use the pix_enable as a clock enable or take advantage of the higher processing rate by
using multiple clocks to process each pixel.

Tutorial Files
The vsk_vid_pcore_tutorial files can be found in the %VSK\Examples\
SysgenTutorial\VSK_pcore_tutorial directory (%VSK refers to the directory
where the VSK CD is installed).

The following files and directories are used in the tutorial:

• vid_go_start.mdl // a starting model for the tutorial

• vid_go_solution.mdl // the finished model

• edk_vid_go_start // the starting EDK project directory

• edk_vid_go_solution // the completed EDK project directory

• viodc_wrapper_v11b.bit // the VIODC bit file

• vsk_vid_gain_offset.c // the C driver software for gain offset

• vsk_tutorial_top.c // the top-level c-file for the tutorial

Building the Gain Offset Pcore in System Generator
The gain and offset peripheral is created using Xilinx System Generator toolkit and
MATLAB Simulink. After testing in System Generator, the design is exported as a pcore
and integrated into an existing EDK project. To create the gain and offset system, follow
these steps.

1. Open MATLAB.

2. Open the model vsk_vid_pcore_tutorial/vid_go_start.mdl. Save the
design as vid_go.mdl.

The model includes a test pattern generator which generates a packed video stream
with pack and unpack functions. The test pattern simulates a 100 pixel x 10 line video
frame, with R,G,B ramps in the horizontal direction.

http://www.xilinx.com

92 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
R

3. Run the model by clicking on the start simulation button. The user should see the test
pattern displayed on the scope as shown in Figure 6-3.

4. Click on the block labeled vid_gain_offset to open the block to be generated as a
pcore. The name of this block will be the name of the generated pcore.

The model contains a number of blocks and subsystems that are used to generate and
define the pcore.

♦ System Generator block – used to generate the pcore.

♦ EDK Processor block – generates the interface to the MicroBlaze using FSL
interface. For more details on the EDK flow, refer to Chapter 3, “EDK
Integration.”

♦ Input and output gateways – supply simulation vectors and are connected to
video streams

Figure 6-3: vid_go_start Simulation Results

Figure 6-4: Gain and Offset Processing Pcore

http://www.xilinx.com

Video Starter Kit www.xilinx.com 93
UG217 (v1.5) October 26, 2006

Building the Gain Offset Pcore in System Generator
R

♦ Pack and unpack subsystem – convert the VSK video stream format to RGB plus
hsync, vsync and pix_enable.

♦ Delay block – serves to pipeline the video stream to improve FPGA timing.

5. Open the subsystem labeled gain_offset and then open the subsystem labeled
go_red. The user will implement a gain and offset function in this subsystem and
copy it to the green and blue channel.

6. Open the Library Browser (View->Library Browser) and select the Xilinx blockset.
Find a multiplier and adder, and convert blocks and drag them into the go_red
subsystem. Now add a couple of from registers to the diagram. These allow the
MicroBlaze to set the offset and gain values by writing to these registers.

7. Add a scope and connect the blocks as shown in Figure 6-5.

8. Configure the blocks as follows:

♦ Set the output type of the convert block to 10-bits unsigned, set round to round-
even, and set overflow to saturate. Set the latency to 1 to add a pipeline register.
Set binary point to 0.

♦ Set the name of the offset register to red_offset, and the output type to 16-bit
signed, with a binary point at bit 0. Set the initial value to 0.

♦ Set the name of the gain register to red_gain, and the output type to 16-bit
signed, with a binary point at bit 12. Set the initial value to 1.

♦ Set the adder latency to 1 to add a pipeline register.

9. Open the EDK processor block in the next to the top-level subsystem. Configure the
EDK interface by clicking on the add button followed by Apply to generate the
processor interface to the from registers.

Figure 6-5: Connecting the Blocks

http://www.xilinx.com

94 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
R

Double click on the red gain in the EDK processor menu to set the initial gain to 1.
Press Play in the Simulink model and open the output scope. and observe the input
and output signals on the scope. If the design is correct, the output is seen as a delayed
version of the input. To see the effect of the gain and offset circuit, the user can alter the
initial values of the gain and offset register.

Note: The user must leave the EDK processor menu open for new values to take effect. This is
because a new memory map is created when the menu is closed which resets the gain to the
initial value.

10. Now create the green and blue channel by copying the go_red subsystem. Change the
names in the from registers to green_gain, green_offset, blue_gain, and
blue_offset. Click each gain or offset register to set the initial values to 1 and 0. Add
the new registers to the processor interface as follows:

a. Close the EDK processor block and reopen it.

b. Right click in the memory map pane and select Delete_All followed by Apply.

c. Select Add All followed by Add and Apply. A pop-up generating the memory map
should now be seen.

d. Close the EDK processor menu and right click on the EDK processor block and
select Look Under Mask to see the generated memory map.

e. Run the design and check the output for correctness. All three outputs at the top
level scope can be seen.

11. Set the delays for hsync, vsync, and pixel_enable in the gain_offset subsystem to match
the latency of the gain_offset blocks. See Figure 6-7.

12. Save the design as vid_go.mdl.

Figure 6-6: EDK Processor Configuration

http://www.xilinx.com

Video Starter Kit www.xilinx.com 95
UG217 (v1.5) October 26, 2006

Testing the Video Function in System Generator
R

Testing the Video Function in System Generator
Run the vid_go.mdl design at the top level to verify the expected results. If a gold model
is available, it can be compared to the System Generator results at the top level.

Generating the Pcore
To generate the pcore, generate an HDL netlist for the pcore using the pcore-export output
flow.

1. Before generating the pcore, create a new EDK project named edk_vid_go by
copying the VSK diagnostics EDK project named edk_vid_go_start to a new
directory.

Copy the %VSK\Examples\SysgenTutorial\VSK_pcore_tutorial\
edk_vid_go_start directory to a new directory. Rename the directory to
edk_vid_go. An EDK project containing the finished tutorial is also available as
edk_vid_go_solution.

2. Open the completed model vid_go.mdl and open the vid_gain_offset
subsystem.

3. Open the EDK processor block and make sure EDK Pcore Generation is selected.
Close the EDK Processor block.

4. Open the System Generator block. Select Export as a pcore to EDK as a compilation
target. Select Virtex-4 V4SX35-10ff668 as a Part and select a 10 ns clock period.

Figure 6-7: Design Saved as vid_go.mdl

http://www.xilinx.com

96 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
R

5. Under Compilation Settings, select the pcore version and select the EDK project
directory that contains the edk_vid_go EDK project. The EDK pcore will be created
and moved to the pcore directory in the EDK project.

6. To generate a pcore, a target directory needs to be specified. This is the directory the
pcore will be created in. After generation is complete, the pcore will be copied to the
EDK project. Select a target directory. Click on Generate to generate the pcore.

7. Save and close the model after generation completes.

Importing the Pcore into an EDK Project
The pcore is now imported into the EDK project using the Configure Coprocessor option.
This option connects the pcore to the MicroBlaze processor using FSL ports. The input and
output video streams need to be connected manually using the Add/Edit port map GUI.

1. Open Xilinx Platform Studio.

2. Open the %VSK\Examples\SysgenTutorial\VSK_pcore_tutorial\
edk_vid_go\system.xmp project.

3. Make sure the pcore is recognized by running Project->Rescan User Repositories.

4. Open Hardware->Configure Coprocessor.

5. Select vid_gain_offset_sm and add the pcore to the project as shown in Figure 6-9.

Figure 6-8: Generating the Pcore

http://www.xilinx.com

Video Starter Kit www.xilinx.com 97
UG217 (v1.5) October 26, 2006

Importing the Pcore into an EDK Project
R

After selecting OK, the user is directed to the add/edit cores menu to wire up the
unconnected ports.

6. In the top-level System Assembly pane, select the Ports filter and menu; change the
instance name of the imported pcore by clicking on the pcore name and renaming the
block to vid_gain_offset. The software libraries will be generated with this name.

7. Expand the vid_gain_offset pcore to show the port signal names by clicking on
the [+] icon.

8. Select the port name. Select the Net column of the ce port and modify the net name to
net_vcc.

9. Now wire the 33-bit video data buses between the pcores. The vid_gain_offset
pcore will be inserted in the video pipeline after the vop pcore.

Figure 6-9: Configure Coprocessor Panel

Figure 6-10: System Menu Showing New Imported Pcore

http://www.xilinx.com

98 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
R

a. Select the vid_in port and modify the net connection to vchan_1.

b. Select the vid_out port and modify the net connection to vchan_2

c. Open the vio_if pcore port list and modify the vin net connection to vchan_2.

d. Open the ddr pcore port list and modify the vchan_1 net connection to
vchan_3.

Note: The ddr pcore is not actually used in the data path of this tutorial. It is included so
that this design can be used as a starting point for more complex designs that might require
the ddr pcore.

10. After configuring the pcore port names, the video buses between the pcores should be
wired as shown in Figure 6-11.

11. Select Hardware->Generate Netlist to generate a new netlist and check that the pcore
import is error free.

12. Select Hardware->Generate Bitstream to generate the bitstream

These last steps take 10-20 minutes to the new hardware implementation.

Importing the Pcore Software Drivers
Next, the user needs to create the software drivers to load the gain and offset registers. Base
I/O functions are already created when the pcore was created and can be found in the file
<vid_gain_offset.h>, but the base IO functions will be wrapped with another C-
function to load the offset and gain.

The completed C functions are found in the file named vsk_vid_gain_offset.c. This
file includes the function below which sets the video gain according to a channel number:

void set_vid_gain(int chan, int gain)
{
 if(chan==0)
 {
vid_gain_offset_Write(VID_GAIN_OFFSET_RED_GAIN,
VID_GAIN_OFFSET_RED_GAIN_DIN, gain);

 }
 if(chan==1)
 {
vid_gain_offset_Write(VID_GAIN_OFFSET_GREEN_GAIN,
VID_GAIN_OFFSET_GREEN_GAIN_DIN, gain);

 }
 if(chan==2)
 {

Figure 6-11: Pcore Wiring with vid_gain_offset Pcore Inserted into Video Pipeline

vio_if vop vid gain
offset

VIODC
vchan_0 vchan_1

vchan_2
ug217_ch7_12_121205

http://www.xilinx.com

Video Starter Kit www.xilinx.com 99
UG217 (v1.5) October 26, 2006

Controlling the Pcore from a Demo Menu
R

vid_gain_offset_Write(VID_GAIN_OFFSET_BLUE_GAIN,VID_GAIN_OFFSET
_BLUE_GAIN_DIN, gain);
 }
}

1. Copy the files vsk_vid_gain_offset.c and vsk_turorial_top.c into the
%VSK\Examples\SysgenTutorial\VSK_pcore_tutorial\edk_vid_go\VSK_
diagnostics\src directory.

2. Under the application pane, select VSK_Diagnostics/Sources and right click. Select
Add Existing Files.

3. Add the selected file, vsk_vid_gain_offset.c.

4. Add vsk_tutorial_top.c to VSK_Diagnostics/Sources.

5. Right click on the file vsk_top.c. Select Remove.

6. Select Device Configuration->Update Bitstream to compile the software.

Controlling the Pcore from a Demo Menu
To demonstrate the vid gain and offset function, the user can construct a simple means of
controlling the gain and offset from a keystroke menu over an RS-232 port. The imported
.c files contain a menu function named main_vid_offset_gain for the purpose of
controlling the gain and offset.

The vsk_vid_offset_gain menu can be called from a top-level menu in the
vsk_tutorial_top.c file. From the top-level menu, call the gain offset menu using the
‘o’ key.

Running the Tutorial with Live Video
To run the tutorial with live video, the user also needs to load the VIODC bit file. To do so:

1. Open a command window in Windows XP and type impact. This brings up the
iMPACT GUI (Figure 6-12).

2. Click the Boundary Scan mode in the iMPACT modes pane and the select File-
>initialize Chain to scan the JTAG chain, and select the XCV2P7 device. Select Cancel
when asked to select a configuration file.

3. Right click on the XCV2P7 icon, and select Assign a New Configuration File. Select
the file viodc_wrapper_11b.bit in the tutorial directory and load it to the FPGA
using program using Operations -> Program.

http://www.xilinx.com

100 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 6: VSK Tutorial
R

To run the tutorial:
4. Open the project in Xilinx Platform Studio. To load the project in Xilinx Platform

Studio, use File -> Open and select …/vsk_tutorials/edk_vid_go/system.xmp.
5. Connect the Parallel JTAG cable to the JTAG port (FPGA & CPU Debug) on the bottom

board of the VSK and the PC.
6. Using EDK (Tools -> Download), download the EDK project to the XC4VSX35 device.

Alternately, load the download.bit file from the EDK project to the XC4VSX35 using
iMPACT.

7. Connect an RS-232 terminal to the VSK serial port and configure the terminal program
for 115,200 Baud, 8-N-1, no flow control.

8. If it has compiled and loaded correctly, it should print the top-level menu on screen.
9. Select 1 to configure the VSK to use the RGB camera input.
10. Select O to enter the vid_gain_offset menu.
11. Control the gain and offset using the ‘[]’ and ‘{}’ keys.
12. Select a color channel and mode using the ‘r’, ’g’, ‘b’ keys.
13. ESC to quit.

Figure 6-12: iMPACT Window

http://www.xilinx.com

Video Starter Kit www.xilinx.com 101
UG217 (v1.5) October 26, 2006

R

Chapter 7

Compiling the VIODC FPGA Design

This chapter describes how to compile the System Generator vsk_viodc_xxx.mdl
design to a bitstream (xxx is the version number). The chapter covers the following:

• Tutorial overview

• Overview of VIODC design compilation process

• Incrementing the VIODC version ID

• Generating the design using the multiple subsystem generator

• Using ISE Project Navigator to add a VHDL wrapper

• Loading the VIODC design to the XCV2P7 FPGA on the VIODC board

• Verifying the operation of the VIODC

Tutorial Overview
This tutorial is intended to illustrate the process of compiling the VIODC FPGA design
using System Generator and Xilinx ISE. Source files for this tutorial are available on the
CDROM under the Examples directory:

Examples/vsk_diagnostics/viodc

Overview of VIODC Design Compilation Process
The VIODC board includes a Xilinx XCV2P7 FPGA to interface to the various video
interfaces. The VIODC FPGA design uses seven independent clock domains to interface to
the various video interface devices. Sysgen designs using multiple clocks require the use of
the Multiple Subsystem Generator (MSG) block to generate an HDL design. The HDL is
then wrapped with a top-level VHDL design and associated with a UCF user constraint
file. The wrapper is then compiled using ISE Project Navigator. After a bitfile is obtained,
it is loaded to the board using iMPACT software. Optionally, it can be compiled into a
System Ace Flash image and loaded automatically.

VIODC Design Components
• vsk_viodc_xxx.mdl – The System Generator VIODC design source file. This file

also requires two additional files xl_bufg.vhd and xl_bufg_config.m which are
required to support the BUFG UNISIM primitive.

• viodc_sgl_xxx.vhd – The VHDL wrapper design. This design wraps the System
Generator design. It is required to add various LVDS and 3-state buffers to the design.
The ‘_sgl_’ qualifier denotes that this is a design for the VIODC which uses the
single-ended version of the VIOBUS to communicate with the ML402 FPGA platform.

http://www.xilinx.com

102 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 7: Compiling the VIODC FPGA Design
R

• viodc_sgl_11c.ucf – The .ucf constraint file associated with the top-level FPGA
design

Incrementing the VIODC Version ID
The VIODC design includes a register which is used as a version ID. In this design, the
version is simply incremented from 0x11c to 0x11d.

1. Open the vsk_viodc_xxx.mdl design and save a new copy and increment the
version in the name. Example: copy vsk_viodc_11c.mdl and save as
vsk_viodc_11d.mdl.

2. From the top level, open the video_mux/sport (Figure 7-1).

3. Open the constant block design_version.

4. Increment the version ID. For example, change hex 011c to 011d.

5. Save the file.

Generating the Design Using the Multiple Subsystem Generator
To generate the design, use the Multiple Subsystem Generator (MSG) block. When the
design is generated, SysGen will generate each subsystem individually, followed by
generating a top-level wrapper for the entire SysGen design.

1. Open the top-level design vsk_viodc_xxx.mdl (Figure 7-2) and open the Multiple
Subsystem Generator block (Figure 7-3).

Figure 7-1: VIODC Serial Register I/O Block

http://www.xilinx.com

Video Starter Kit www.xilinx.com 103
UG217 (v1.5) October 26, 2006

Generating the Design Using the Multiple Subsystem Generator
R

2. Change the Target Directory to .\msg\vsk_viodc_xxx. For
example,.\msg\vsk_viodc_11d

3. Select the xcv2p7-7ff672 as a part.

4. Click Generate. The design will generate to the specified directory. This process will
take a few minutes.

5. The resulting directory will look similar to the following directory structure:
(Figure 7-4).

Figure 7-2: vsk_viodc_xxx.mdl Top Level

Figure 7-3: MSG Generate Block

http://www.xilinx.com

104 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 7: Compiling the VIODC FPGA Design
R

Using ISE Project Navigator to Add a VHDL Wrapper
Xilinx Project Navigator is used to create the final viodc_design.

1. Copy the included wrapper file viodc_sgl_xxx.vhd into the
./msg/vsk_viodc_xxx directory and increment the .vhd name to match the new
revision number. For example, copy the included wrapper file viodc_sgl_11c.vhd
to msg/vsk_viodc_11d/viodc_sgl_11d.vhd.

2. Copy the included UCF file viodc_sgl_xxx.ucf into the ./msg/vsk_viodc_xxx
directory and increment the .ucf name to match the new revision number. For
example, copy the included constraints file viodc_sgl_11c.ucf to
msg/vsk_viodc_11d/viodc_sgl_11d.ucf.

3. Edit viodc_sgl_xxx.vhd wrapper to increment the entity and architecture names of
the design (e.g., from 11c to 11d), and also increment the component declaration and
instance names (vsk_viodc_11c to 11d). Basically, do a find/replace (replace 11c
with 11d).

4. Open the project (for ISE 8.2, this would be the vsk_viodc_xxx.ise file) Project
Add Source vsk_viodc_xxx.vhd and vsk_viodc_xxx.ucf. The top level should
now show viodc_wrapper_xxx as the top entity name.

5. Select that entity (already done in ISE 8.2) and double-click on Generate Programming
File. This will take a few minutes. The project tree will look similar to Figure 7-5.

6. Generate the bitfile from the ISE Tools menu.

Figure 7-4: Directory Structure Generated by Multiple Subsystem Generator

http://www.xilinx.com

Video Starter Kit www.xilinx.com 105
UG217 (v1.5) October 26, 2006

Loading the VIODC Design to the XCV2P7 FPGA on the VIODC Board
R

Loading the VIODC Design to the XCV2P7 FPGA on the VIODC
Board

The modified VIODC design can now be loaded to the VSK.

1. Load the VSK diagnostics from the Compact Flash (or the EDK project). This will load
the XC4VSX35 device on the ML402 board with the diagnostics design
(download.bit), which is capable of reading the VIODC's ID register. The
XC4VSX35 device needs to be programmed to communicate to the registers in the
XC2VP7 device with the serial link.

2. Open the Xilinx iMPACT program either in Project Navigator or from a command line.

3. Connect a JTAG parallel cable IV to the VSK ML402 JTAG port (labeled FPGA & CPU
Debug port). Power up the VSK.

4. Scan the JTAG chain and select the XCV2P7 device.

5. Assign the bitfile named vsk_viodc_xxx.bit to the XCV2P7 device.

6. Load the VSK_diagnostics program.

7. Load the bitfile to the XCV2P7 device.

Verifying the VIODC Operation
First connect a terminal for the UART. The terminal will communicate with the UART
connected to the MicroBlaze running the VSK diagnostic program in the XC4VSX35 FPGA.

1. 1Connect a PC to the ML402 RS-232 serial port using a null-modem cable.

2. Set up a terminal program to for 115,200 baud, 8-bit, no parity, and no flow control.

Now see if the new version number can be read by the VIODC. The terminal program
should already be running. Press '1' to initialize the camera. Pressing '?' will being up a
help menu.

3. In the top-level menu, type ‘v’ to enter the VIO diagnostics menu.

4. Using the VIO diagnostics menu, read the version register from the VIODC board.

a. Use the ‘-‘, ’=’ key pair to select the VIODC registers.

Figure 7-5: Project Navigator Source File View

http://www.xilinx.com

106 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Chapter 7: Compiling the VIODC FPGA Design
R

b. Use the ‘[‘,‘]’ key pair to select address 0x10, which points to the VIODC version
register.

c. Read the VIODC version register using the ‘,’ key. It should read 0x11d.

d. Alternately, use the ‘d’ key to display all the register values in the VIODC.

Modifying the VSK Diagnostic Software EDK Project
The vio.c also needs to be modified because the VSK diagnostic software checks for the
expected version of the VIODC in the vio_if_init() routine. If it detects an incorrect
value, the following message appears when booting:

-- Video Starter Kit - press ? for help

Error Incorrect VIODC version found
Expected =0x11C, found 0x11D.

To fix this problem, change the #define VIODC_VERSION in the vio.c file to the
expected value. When the EDK program is recompiled and run, the expected version will
now match the value read from the VIODC.

http://www.xilinx.com

Video Starter Kit www.xilinx.com 107
UG217 (v1.5) October 26, 2006

R

Appendix A

VSK I/O Connector Location Pictures

VIODC Connectors

Figure A-1: VIODC Rear View

LVDS
Camera Power

Switch
5V Power
Input

ML402

ML402
Audio

VIODC
JTAG
Connector

ML402
Ethernet

VIODC
VGA In

VGA Out

http://www.xilinx.com

108 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Appendix A: VSK I/O Connector Location Pictures
R

Figure A-2: VIODC Left Side View

VIODC
DVI In ML402

RS-232
VIODC
DVI/VGA Out

ML402
JTAG

http://www.xilinx.com

Video Starter Kit www.xilinx.com 109
UG217 (v1.5) October 26, 2006

VIODC Connectors
R

Figure A-3: VIODC Right Side View

VIODC
SDI Out

VIODC
SDI IN

VIODC
Composite
Out

VIODC
Composite
In

VIODC
Y Out VIODC

Y In
VIODC
Pb Out VIODC

Pb In

VIODC
Pr Out VIODC

Pr In

VIODC
S-Video
In

VIODC
S-Video
Out

http://www.xilinx.com

110 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Appendix A: VSK I/O Connector Location Pictures
R

LVDS Camera

Figure A-4: LVDS Camera

LVDS
Camera
HOST
Port

http://www.xilinx.com

Video Starter Kit www.xilinx.com 111
UG217 (v1.5) October 26, 2006

ML402 Board
R

ML402 Board

Figure A-5: ML402 Board

http://www.xilinx.com

112 www.xilinx.com Video Starter Kit
UG217 (v1.5) October 26, 2006

Appendix A: VSK I/O Connector Location Pictures
R

Figure A-6: ML402 Evaluation Platform

http://www.xilinx.com

	Video Starter Kit
	Contents
	Schedule of Figures
	Schedule of Tables
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Video Starter Kit Overview
	Key Features
	VSK Hardware Overview
	ML402 Development Platform
	XC4VSX35 FPGA
	Gigabit Ethernet
	RS-232 Port
	DDR Memory
	System Ace Controller
	I/O Expansion Header
	Video Input and Output Daughter Card
	LVDS Camera Input
	Component Video I/O
	DVI Digital Video I/O
	S-Video and Composite Video
	SDI Video Interface
	XCV2P7 FPGA

	VSK Demo Application
	Software and Application Updates Available Online

	Software Support Package Overview
	Software Simulation
	Hardware Implementation
	Hardware Co-Simulation

	VIODC HDL Support Package
	System Generator Support
	DDR Memory Controller
	Pcore Export and EDK Import
	Multiple Subsystem Generator
	Ethernet Co-Sim
	Diagnostics
	Demonstrations

	Developing Video Applications In System Generator
	Overview
	Real-Time Operation
	Hardware-in-the-Loop Video Simulation
	Hardware-in the Loop Co-Simulation
	Software Simulation Modes
	Hardware-Software Systems
	Hardware-Software Communication
	Memory Mapped Hardware
	MicroBlaze Processor Communicating with a Shared Memory
	Hardware-Software Co-Simulation

	VSK Video Processor Development System

	EDK Integration
	Overview
	MicroBlaze Processor Interface
	EDK Pcore Export Mode
	EDK Import Mode

	Adding a Processor to a System Generator Design
	The EDK Processor Block
	Interfacing the EDK Processor to User Logic
	Exporting the Design as a Pcore
	Importing an EDK Project into System Generator

	Writing Software Code

	Hardware Co-Simulation
	Hardware Co-Simulation Overview
	Co-Simulation Communication Primitives
	Ports
	Shared Register
	Shared Memory
	FIFO
	Pad
	Shared Memory Read/Write Blocks

	Co-Simulation Interfaces
	JTAG
	PCI
	Network-Based Ethernet Co-Simulation
	Point to Point Ethernet Co-Simulation
	Third Party Co-Simulation
	Building a Co-Sim Project
	Ethernet Co-Sim Setup
	System ACE Setup
	System ACE Troubleshooting
	Ensuring a Correct Setup
	Frame Based Co-Simulation Tutorial

	VSK Diagnostics and Support Tool Kit
	Overview
	VIODC Design
	IIC Interface
	VIODC-ML402 Serial Port
	VIODC Registers
	Clock Routing

	VIO Design
	VIO Mask
	EDK Pcore
	Bitstream
	VIO I/O Buses
	VIO Registers

	DDR Design
	VOP Design
	Running the Diagnostics
	Hardware Setup
	Software Setup
	Additional Diagnostics and Controls

	VSK Tutorial
	Overview
	Creating a Video Gain and Offset Peripheral
	Gain and Offset Theory
	System Architecture
	Video Stream Format
	Pixel Enable

	Tutorial Files
	Building the Gain Offset Pcore in System Generator
	Testing the Video Function in System Generator
	Generating the Pcore
	Importing the Pcore into an EDK Project
	Importing the Pcore Software Drivers
	Controlling the Pcore from a Demo Menu
	Running the Tutorial with Live Video

	Compiling the VIODC FPGA Design
	Tutorial Overview
	Overview of VIODC Design Compilation Process
	VIODC Design Components
	Incrementing the VIODC Version ID

	Generating the Design Using the Multiple Subsystem Generator
	Using ISE Project Navigator to Add a VHDL Wrapper
	Loading the VIODC Design to the XCV2P7 FPGA on the VIODC Board
	Verifying the VIODC Operation
	Modifying the VSK Diagnostic Software EDK Project

	VSK I/O Connector Location Pictures
	VIODC Connectors
	LVDS Camera
	ML402 Board

